

The Algorithmic Landscape of Priority-Respecting Allocations

Matthew Eichhorn

Based on joint work with Sid Banerjee and David Kempe Paper: https://arxiv.org/abs/2204.13019

Matthew Eichhorn

Priority-Respecting Allocations

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

• Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

• Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

What is a "fair" way to allocate care?

Commonly used priority schemes have issues

Formalizing the Reserve Allocation Setting

Agents : A, n = |A|

- Unit demand for the resource
- Indifferent about how they are allocated

Categories : C, m = |C|

Each category $c \in C$ has:

Quota : $q_c \in \mathbb{N}$, $q = \sum_{c \in \mathcal{C}} q_c$ Eligibility : $\mathcal{E}_c \subseteq \mathcal{A}$

Priorities : Total pre-order \succeq_c over \mathcal{E}_c

- \succeq_c separates agents into ranked *priority tiers*
- $a \succeq_c a' \implies c$ gives priority to a over a'

Visualizing an Instance

lpha (2)	eta (1)	γ (1)
а	b	Ь
b	с,е	а
С	d	
d		
е		

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$ Determines recipient set $\mathcal{A} \setminus \varphi^{-1}(\emptyset)$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$ Determines recipient set $\mathcal{A} \setminus \varphi^{-1}(\emptyset)$

What properties should φ have?

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$ Determines recipient set $\mathcal{A} \setminus \varphi^{-1}(\emptyset)$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

$$|arphi^{-1}(c)| \leq q_c$$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$ Determines recipient set $\mathcal{A} \setminus \varphi^{-1}(\emptyset)$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas $|arphi^{-1}(c)| \leq q_c$

Eligibility Respecting [ER]: Categories only allocate to eligible agents $\varphi^{-1}(c) \subseteq \mathcal{E}_c$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$ Determines recipient set $\mathcal{A} \setminus \varphi^{-1}(\emptyset)$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas $|\varphi^{-1}(c)| < q_c$

Eligibility Respecting [ER]: Categories only allocate to eligible agents $\varphi^{-1}(c) \subset \mathcal{E}_{c}$

Priority Respecting [PR]: A category allocates to an agent only if all higher-priority agents have been allocated

$$\varphi(\mathbf{a}') = \mathbf{c} \ \land \ \mathbf{a} \succeq_{\mathbf{c}} \mathbf{a}' \implies \varphi(\mathbf{a}) \neq \varnothing$$

Visualizing an Allocation

Visualizing an Allocation

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR], allocates to a strict superset of agents

$$\neg \exists \psi : \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)$$

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR], allocates to a strict superset of agents $\neg \exists \psi : \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)$

Is there an efficient algorithm to find allocations with these properties?

Existing Approaches

Pathak et al (2021) [1]: Variant of Deferred Acceptance [2]

- Agents have arbitrary preferences over eligible categories
- Run DA with agents proposing to categories
- [QR], [ER], [PR], not necessarily [PE]

Delacrétaz (2021) [3]: Simultaneous Reserves Algorithm

- "Water-filling" down priority lists determines who gets allocated
- [QR], [ER], [PR], not necessarily [PE]

Aziz and Brandl (2021) [4]: Reverse Rejecting Algorithm

- Iteratively certifies whether a maximal allocation can be found without allocating to a particular agent
- All four properties, but requires O(n) max matching problems

Toward an Efficient Algorithm

Decision variables:
$$\mathbf{x} = \{x_{a,c}\}_{a \in \mathcal{A}, c \in \mathcal{C}}$$
. $x_{a,c} = \mathbb{I}(\varphi(a) = c)$,

 (P_0)

$$\begin{array}{ll} \max \quad V(\mathbf{x}) := \sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} x_{a,c} & [PE] \\ \text{s.t.} & \sum_{a \in \mathcal{A}} x_{a,c} \leq q_c & \forall \ c \in \mathcal{C} & [QR] \\ & \sum_{c \in \mathcal{C}} x_{a,c} \leq 1 & \forall \ a \in \mathcal{A} & [UD] \\ & x_{a,c} = 0 & \forall \ a,c : \ a \notin \mathcal{E}_c & [ER] \\ & x_{a,c} \in \{0,1\} & \forall \ a \in \mathcal{A}, c \in \mathcal{C} \end{array}$$

 (P_0) encodes a bipartite *b*-matching problem

LP-relaxation is totally unimodular \implies integer corner points

Priority-Respecting Allocations

(P_0) Doesn't Account for Priorities

(P_0) Doesn't Account for Priorities

(P_0) Doesn't Account for Priorities

To incorporate priorities, we'll modify the IP objective.

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Interpreting $\delta_{a,c}$ as the cost of allocating *a* through *c*, a valid δ satisfies:

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Replace $V(\mathbf{x})$ with $V_{\delta}(\mathbf{x}) = \sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} \left(1 - \delta_{a,c}\right) x_{a,c}.$

Interpreting $\delta_{a,c}$ as the cost of allocating a through c, a valid δ satisfies:

Small Effect: Costs don't disincentivize allocation $\sum \sum \delta_{a,c} \leq \frac{1}{2}$

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

 $\text{Replace } V(\mathbf{x}) \text{ with } V_{\delta}(\mathbf{x}) = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{c \in \mathcal{C}} \left(1 - \delta_{\mathbf{a}, c} \right) x_{\mathbf{a}, c}.$

Interpreting $\delta_{a,c}$ as the cost of allocating *a* through *c*, a valid δ satisfies:

Small Effect: Costs don't disincentivize allocation

$$\sum_{\mathbf{a}\in\mathcal{A}}\sum_{\mathbf{c}\in\mathcal{C}}\delta_{\mathbf{a},\mathbf{c}}\leq \frac{1}{2}$$

Consistent: Prioritized agents have lower cost $a \succeq_c a' \iff \delta_{a,c} \le \delta_{a',c}$

Our Perturbed LP

Given any $\delta,$ define the LP

 (P_{δ})

max	$V_{\delta}({f x})$	
s.t.	$\sum_{a \in \mathcal{A}} x_{a,c} \leq q_c$	$orall oldsymbol{c} \in \mathcal{C}$
	$\sum_{c \in \mathcal{C}} x_{a,c} \leq 1$	$orall oldsymbol{a} \in \mathcal{A}$
	$x_{a,c} = 0$	$\forall a, c : a \notin \mathcal{E}_c$
	$x_{a,c} \geq 0$	$orall \ m{a} \in \mathcal{A}, m{c} \in \mathcal{C}$

Our Perturbed LP

Given any $\delta,$ define the LP

1	D	١.
1	P_{s}	L
L	0	1

max	$V_{\delta}({f x})$	
s.t.	$\sum_{a \in A} x_{a,c} \le q_c$	$orall oldsymbol{c} \in \mathcal{C}$
	$\sum_{c \in \mathcal{C}}^{a \in \mathcal{A}} x_{a,c} \leq 1$	$orall oldsymbol{a} \in \mathcal{A}$
	$x_{a,c} = 0$	$\forall a, c : a \notin \mathcal{E}_c$
	$x_{a,c} \geq 0$	$orall \ m{a} \in \mathcal{A}, m{c} \in \mathcal{C}$

Theorem

Let \mathbf{x}^* be a solution of (P_{δ}) for any valid δ . Then, \mathbf{x}^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Matthew Eichhorn

Priority-Respecting Allocations

Converse result:

Theorem (Informal)

Every recipient set determined by a fair allocation can be located by solving (P_{δ}) for some valid δ .

- Our perturbed matching framework is a standard setting
- The restrictions we've placed on δ are minimal

How far can we extend our techniques to handle related problems?

3 Case Studies: "Computational knife's edge" of priority-respecting allocation

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

Check if max matching size decreases

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* good allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C problem.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

Check if max matching size decreases

lpha (2)	eta (1)	γ (1)
w	x	x
x	a , z	W
а	у	
y		

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* good allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C problem.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

Check if max matching size decreases

lpha (2)	eta (1)	γ (1)
W	x	x
x	Ζ	w

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* good allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C problem.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

Check if max matching size decreases

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* good allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C problem.

October 18, 2022

2. Incorporating Agent Utility

Agent *a* has a utility function $u_a : C \to (0, 1]$ encoding preference for certain categories. $(u_a(\emptyset) = 0.)$

Utility Pareto-Efficient Allocation

Run our algorithm twice

First run uses arbitrary δ to determine recipient set.

Second run removes agents outside of recipient set and sets δ according to agent utilities.

Utility Maximizing Allocation

NP-Hard via a reduction from serviceable problem.

Proof Idea: One agent has high utility in all categories, others have low utility.

*Hardness reduction can be generalized to other optimization objectives (e.g. Nash Social Welfare)

3. Global Fairness Heuristics

For each eligible agent $a \in \mathcal{E}_c$, let $r_c(a)$ be their priority tier in c(1 = highest priority, 2 = next priority tier, etc.)

Minimizing Maximum Allocated Rank

Run algorithm with "geometric" perturbation

 $\delta_{a,c} \propto n^{r_c(a)}$

Proof Idea: Cost of highest ranked allocation dominates all others.

Maximizing Minimum Unallocated Rank

NP-Hard via an XC3 reduction similar to serviceable problem.

Proof Idea: Serviceable candidate has low rank in their only category. Other categories fill more ranks.

Conclusion

- Reserve Allocation is a reasonable modeling framework for assignment problems with "competing" objectives
- Can locate good allocations via a weighted matching LP
 - More efficient than existing approaches
 - Provides flexibility to many problem extensions

Open Questions:

Natural desiderata that locate a unique (fractional) allocation?

Can this allocation be computed efficiently?

• Our perturbation technique seems useful in other related problems

Thank You!

References

- P. A. Pathak, T. Sönmez, M. U. Ünver, and M. B. Yenmez, "Fair allocation of vaccines, ventilators and antiviral treatments: leaving no ethical value behind in health care rationing," in *Proceedings of the* 22nd ACM Conference on Economics and Computation, pp. 785–786, 2021.
- D. Gale and L. S. Shapley, "College admissions and the stability of marriage," *The American Mathematical Monthly*, vol. 69, no. 1, pp. 9–15, 1962.
- D. Delacrétaz, "Processing reserves simultaneously," in Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 345–346, 2021.
- H. Aziz and F. Brandl, "Efficient, fair, and incentive-compatible healthcare rationing," in *Proceedings of the 22nd ACM Conference on Economics and Computation*, pp. 103–104, 2021.

Proving the Main Theorem

Theorem

Let \mathbf{x}^* be a solution of (P_{δ}) for any valid δ . Then, \mathbf{x}^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Proof Sketch. [ER],[QR]: Ensured by (P_{δ}) constraints. [PR]: δ is Consistent. [PE]: Small Effect of δ and integrality: $V(\hat{\mathbf{x}}) \ge V(\mathbf{x}^*) \ge V_{\delta}(\mathbf{x}^*) \ge V_{\delta}(\hat{\mathbf{x}}) = V(\hat{\mathbf{x}}) - \sum_{a,c} \delta_{a,c} \ge V(\hat{\mathbf{x}}) - \frac{1}{2}.$ so $V(\hat{\mathbf{x}}) = V(\mathbf{x}^*)$ for a solution $\hat{\mathbf{x}}$ to (P_0) .

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?

Lemma X3C *is NP-Complete*.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?

Lemma

X3C is NP-Complete.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?

Lemma

X3C is NP-Complete.

The Reduction

X3C Input:
$$E = \{e_1, e_2, \dots, e_{3n}\}, S = \{S_1, \dots, S_m\}$$

 $S_j = \{e_{i_{j,1}}, e_{i_{j,2}}, e_{i_{j,3}}\}$

Allocation Instance: $\mathcal{A} = E \cup \{s_1, \dots, s_m\} \cup \{f_1, \dots, f_{4(m-n)}\} \cup a$

set categories			
$lpha_1$ (4)		α_m (4)	eta (1)
f_1		f_1	e_1
:		:	÷
$f_{4(m-n)}$		$f_{4(m-n)}$	e _{3n}
<i>s</i> ₁		s _m	а
$e_{i_{1,1}}$		$e_{i_{m,1}}$	
$e_{i_{1,2}}$		$e_{i_{m,2}}$	
$e_{i_{1,3}}$		e _{i_{m,3}}	