Mind your Ps and Qs

Allocation with Priorities and Quotas

Matthew Eichhorn

Based on joint work with Sid Banerjee and David Kempe
Paper: https://arxiv.org/abs/2204.13019

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

- Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

- Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

What is the "best" way to allocate care?

Commonly used 1-D priority schemes have issues

Formalizing the Reserve Allocation Setting

Agents: $\mathcal{A}, \quad n=|\mathcal{A}|$

- Unit demand for the resource
- Indifferent about how they are allocated

Categories: $\mathcal{C}, \quad m=|\mathcal{C}|$
Each category $c \in \mathcal{C}$ has:

$$
\text { Quota: } q_{c} \in \mathbb{N}, \quad q=\sum_{c \in \mathcal{C}} q_{c}
$$

Eligibility : $\mathcal{E}_{c} \subseteq \mathcal{A}$
Priorities: Total pre-order \succeq_{c} over \mathcal{E}_{c}

- \succeq_{c} separates agents into ranked priority tiers
- $a \succeq_{c} a^{\prime} \Longrightarrow c$ gives priority to a over a^{\prime}

Visualizing an Instance

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a		b
b	$c \quad, \quad e$	a
c		d
d		
e		

Feasible Allocations

Goal: Select an allocation map $\varphi: \mathcal{A} \rightarrow \mathcal{C} \cup\{\varnothing\}$

Feasible Allocations

Goal: Select an allocation map $\varphi: \mathcal{A} \rightarrow \mathcal{C} \cup\{\varnothing\}$

What properties should φ have?

Feasible Allocations

Goal: Select an allocation map $\varphi: \mathcal{A} \rightarrow \mathcal{C} \cup\{\varnothing\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

$$
\left|\varphi^{-1}(c)\right| \leq q_{c}
$$

Feasible Allocations

Goal: Select an allocation map $\varphi: \mathcal{A} \rightarrow \mathcal{C} \cup\{\varnothing\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

$$
\left|\varphi^{-1}(c)\right| \leq q_{c}
$$

Eligibility Respecting [ER]: Categories only allocate to eligible agents

$$
\varphi^{-1}(c) \subseteq \mathcal{E}_{c}
$$

Feasible Allocations

Goal: Select an allocation map $\varphi: \mathcal{A} \rightarrow \mathcal{C} \cup\{\varnothing\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

$$
\left|\varphi^{-1}(c)\right| \leq q_{c}
$$

Eligibility Respecting [ER]: Categories only allocate to eligible agents

$$
\varphi^{-1}(c) \subseteq \mathcal{E}_{c}
$$

Priority Respecting [PR]: A category allocates to an agent only if all higher-priority agents have been allocated

$$
\varphi\left(a^{\prime}\right)=c \wedge a \succeq_{c} a^{\prime} \Longrightarrow \varphi(a) \neq \varnothing
$$

Visualizing an Allocation

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
$a)$	b	b
c	c, a	a
d	d	

Visualizing an Allocation

Locating Good Allocations

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR], allocates to a strict superset of agents

$$
\neg \exists \psi: \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)
$$

Locating Good Allocations

$$
\begin{aligned}
\text { Pareto Efficient }[\mathrm{PE}]: & \begin{array}{l}
\text { No alternate allocation satisfying }[\mathrm{ER}],[\mathrm{QR}], \\
{[\mathrm{PR}] \text {, allocates to a strict superset of agents }}
\end{array} \\
& \neg \exists \psi: \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)
\end{aligned}
$$

Is there an efficient algorithm to find allocations with these properties?

Existing Approaches

Pathak et al (2021) [1]: Variant of Deferred Acceptance [2]

- Agents have arbitrary preferences over eligible categories
- Run DA with agents proposing to categories
- [QR], [ER], [PR], not necessarily [PE]

Delacrétaz (2021) [3]: Simultaneous Reserves Algorithm

- "Water-filling" down priority lists determines who gets allocated
- [QR], [ER], [PR], not necessarily [PE]

Aziz and Brandl (2021) [4]: Reverse Rejecting Algorithm

- Iteratively certifies whether a maximal allocation can be found without allocating to a particular agent
- All four properties, but requires $O(n)$ max matching problems

Outline

1. The Reserve Allocation Problem

2. An IP-Based Allocation Algorithm
3. Finding Fair Allocations

Toward an IP Formulation

Decision variables: $\mathbf{x}=\left\{x_{a, c}\right\}_{a \in \mathcal{A}, c \in \mathcal{C}} . \quad x_{a, c}=\mathbb{I}(\varphi(a)=c)$,

Unit Demand: $\sum_{c \in \mathcal{C}} x_{a, c} \leq 1$
$\forall a \in \mathcal{A}$,
$\begin{array}{lr}{[\mathrm{QR}]: \sum_{a \in \mathcal{A}} x_{a, c} \leq q_{c}} & \forall c \in \mathcal{C}, \\ {[\mathrm{ER}]: x_{a, c}=0} & \forall a, c: a \notin \mathcal{E}_{c},\end{array}$

$$
\forall a, c: a \notin \mathcal{E}_{c},
$$

[PE]: "Stronger" Condition: Allocate to maximum number of agents subject to above constraints.

Let $V(\mathbf{x})=\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} x_{a, c}$ be the total allocation of \mathbf{x}.

Toward an IP Formulation

$\left(P_{0}\right)$

$$
\begin{array}{llr}
\max & V(\mathbf{x}) & \\
\text { s.t. } & \sum_{a \in \mathcal{A}} x_{a, c} \leq q_{c} & \\
\sum_{c \in \mathcal{C}} x_{a, c} \leq 1 & \forall a \in \mathcal{C} \\
x_{a, c}=0 & \forall a, c: a \notin \mathcal{E}_{c} \\
x_{a, c} \in\{0,1\} & \forall a \in \mathcal{A}, c \in \mathcal{C}
\end{array}
$$

$\left(P_{0}\right)$ encodes a bipartite b-matching problem, which we can efficiently solve (Hopcraft-Karp, Hungarian Algorithm, etc.).

$\left(P_{0}\right)$ Doesn't Account for Priorities

$\left(P_{0}\right)$ Doesn't Account for Priorities

α (2)	$\beta(1)$	γ (1)
(a)	[(b)
b	c, (c)	a
c ${ }_{\text {c }}$	d	
[${ }^{\text {e }}$		

$\left(P_{0}\right)$ Doesn't Account for Priorities

α (2)	$\beta(1)$	$\gamma(1)$
(a)	b	(b)
b	c, e	a
c	d	
(d)		
e		

To incorporate priorities:

$\left(P_{0}\right)$ Doesn't Account for Priorities

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
$(a$	b	b
\square	c, e	a
c	\square	
d		
\square		

To incorporate priorities:
(1) Local updates: Valid approach, can require $O(m n)$ steps

$\left(P_{0}\right)$ Doesn't Account for Priorities

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	\boxed{b}	b
b	c, e	a
c	\boxed{d}	
d		
e		

To incorporate priorities:
(1) Local updates: Valid approach, can require $O(m n)$ steps
(2) Add constraints: We lose IP structure (integrality of corner pts)

$\left(P_{0}\right)$ Doesn't Account for Priorities

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	\boxed{b}	b
b	c, e	a
c	\boxed{d}	
d		
e		

To incorporate priorities:
(1) Local updates: Valid approach, can require $O(m n)$ steps
(2) Add constraints: We lose IP structure (integrality of corner pts)
(3) Change the IP objective

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Replace $V(\mathbf{x})$ with $V_{\delta}(\mathbf{x})=\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}}\left(1-\delta_{a, c}\right) x_{a, c}$.

Interpreting $\delta_{a, c}$ as the cost of allocating a through c, a valid δ satisfies:

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Replace $V(\mathbf{x})$ with $V_{\delta}(\mathbf{x})=\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}}\left(1-\delta_{a, c}\right) x_{a, c}$.

Interpreting $\delta_{a, c}$ as the cost of allocating a through c, a valid δ satisfies:
Small Effect: Costs don't disincentivize allocation

$$
\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} \delta_{a, c} \leq \frac{1}{2}
$$

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Replace $V(\mathbf{x})$ with $V_{\delta}(\mathbf{x})=\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}}\left(1-\delta_{a, c}\right) x_{a, c}$.
Interpreting $\delta_{\mathrm{a}, \mathrm{c}}$ as the cost of allocating a through c, a valid δ satisfies:
Small Effect: Costs don't disincentivize allocation

$$
\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} \delta_{a, c} \leq \frac{1}{2}
$$

Consistent: Prioritized agents have lower cost

$$
a \succeq_{c} a^{\prime} \Longleftrightarrow \delta_{a, c} \leq \delta_{a^{\prime}, c}
$$

Choosing the Perturbation Weights

Given any δ, define the IP
$\left(P_{\delta}\right)$

$$
\begin{array}{llr}
\max & V_{\delta}(\mathbf{x}) & \\
\text { s.t. } & \forall c \in \mathcal{C} \\
\sum_{a \in \mathcal{A}} x_{a, c} \leq q_{c} & & \forall a \in \mathcal{A} \\
\sum_{c \in \mathcal{C}} x_{a, c} \leq 1 & \forall a, c: a \notin \mathcal{E}_{c} \\
x_{a, c} & =0 & \forall a \in \mathcal{A}, c \in \mathcal{C}
\end{array}
$$

Choosing the Perturbation Weights

Given any δ, define the IP
(P_{δ})

$$
\begin{array}{rlrl}
\max & V_{\delta}(\mathbf{x}) & \\
\text { s.t. } & \sum_{a \in \mathcal{A}} x_{a, c} \leq q_{c} & \forall c \in \mathcal{C} \\
\sum_{c \in \mathcal{C}} x_{a, c} \leq 1 & \forall a \in \mathcal{A} \\
x_{a, c} & =0 & \forall a, c: a \notin \mathcal{E} c \\
x_{a, c} & \in\{0,1\} & \forall a \in \mathcal{A}, c \in \mathcal{C}
\end{array}
$$

Theorem

Let \mathbf{x}^{*} be a solution of $\left(P_{\delta}\right)$ for any valid δ. Then, \mathbf{x}^{*} corresponds to an allocation satisfying $[E R],[Q R],[P R],[P E]$.

Proving this Theorem

Theorem

Let \mathbf{x}^{*} be a solution of $\left(P_{\delta}\right)$ for any valid δ. Then, \mathbf{x}^{*} corresponds to an allocation satisfying $[E R],[Q R],[P R],[P E]$.

Proof Sketch.

[ER],[QR]: Ensured by $\left(P_{\delta}\right)$ constraints.
[PR]: δ is Consistent.
[PE]: Small Effect of δ and integrality:

$$
V(\hat{\mathbf{x}}) \geq V\left(\mathbf{x}^{*}\right) \geq V_{\delta}\left(\mathbf{x}^{*}\right) \geq V_{\delta}(\hat{\mathbf{x}})=V(\hat{\mathbf{x}})-\sum_{a, c} \delta_{a, c} \geq V(\hat{\mathbf{x}})-\frac{1}{2}
$$

$$
\text { so } V(\hat{\mathbf{x}})=V\left(\mathbf{x}^{*}\right) \text { for a solution } \hat{\mathbf{x}} \text { to }\left(P_{0}\right)
$$

Outline

1. The Reserve Allocation Problem

2. An IP-Based Allocation Algorithm

3. Finding Fair Allocations

Realizability of Good Allocations

Previous theorem shows that any valid δ can locate a good allocation.

Converse result:

Theorem (Informal)

All 'meaningful' good allocations are solutions to $\left(P_{\delta}\right)$ for some valid δ.

The restrictions we've placed on δ are minimal.
We can carefully choose δ to find allocations with additional properties.

Example: Have perturbations on different orders of magnitude in different categories to enforce a "priority over categories"

Fair Allocations

Auditability: What info must categories reveal to assure agents that the allocation φ is fair?

Fair Allocations

Auditability: What info must categories reveal to assure agents that the allocation φ is fair?

- For each eligible agent $a \in \mathcal{E}_{c}$, let $r_{c}(a)$ be their priority tier in c ($1=$ highest priority, $2=$ next priority tier, etc.)
- In each $c \in \mathcal{C}, \tau_{c} \in \mathbb{N}$ is a cutoff if:
(1) All agents allocated in c sit at or above the cutoff

$$
\varphi(a)=c \Longrightarrow r_{c}(a) \leq \tau_{c},
$$

(2) All un-allocated agents sit at or below the cutoff

$$
\varphi(a)=\varnothing \Longrightarrow r_{c}(a) \geq \tau_{c}
$$

Notable Cutoff Tiers

- Inner Cutoff: For each $c \in \mathcal{C}$,

$$
\underline{\tau_{c}}=\max _{a \in \varphi^{-1}(c)}\left\{r_{c}(a)\right\}
$$

$\alpha(3)$	$\beta(2)$	$\gamma(2)$
a_{1}	a_{5}	a_{6}
a_{2}	a_{3}, a_{8}	a_{3}
a_{3}	a_{4}	a_{1}
a_{4}	a_{0}, a_{9}	a_{8}
a_{5}	a_{1}	a_{7}
a_{6}		a_{0}
a_{7}		
a_{8}		

Notable Cutoff Tiers

- Inner Cutoff: For each $c \in \mathcal{C}$,

$$
\underline{\tau_{c}}=\max _{a \in \varphi^{-1}(c)}\left\{r_{c}(a)\right\}
$$

- Outer Cutoff: For each $c \in \mathcal{C}$,

$$
\overline{\tau_{c}}=\min _{a \in \varphi^{-1}(\varnothing)}\left\{r_{c}(a)\right\} .
$$

α (3)	β (2)	$\gamma(2)$
a_{1}	a_{5}	a_{6}
a_{2}	a_{3}, a_{8}	a_{3}
a_{3}	a_{4}	a_{1}
a_{4}	a_{0}, a_{9}	a_{8}
a_{5}	a_{1}	a_{7}
a_{6}		a_{0}
a_{7}		
a_{8}		

Notable Cutoff Tiers

- Inner Cutoff: For each $c \in \mathcal{C}$,

$$
\underline{\tau_{c}}=\max _{a \in \varphi^{-1}(c)}\left\{r_{c}(a)\right\} .
$$

- Outer Cutoff: For each $c \in \mathcal{C}$,

$$
\overline{\tau_{c}}=\min _{a \in \varphi^{-1}(\varnothing)}\left\{r_{c}(a)\right\} .
$$

- Every $\left\{\tau_{c}\right\}$ has $\underline{\tau_{c}} \leq \tau_{c} \leq \overline{\tau_{c}}$ for each $c \in \mathcal{C}$.

$\alpha(3)$	$\beta(2)$	$\gamma(2)$
a_{1}	a_{5}	a_{6}
a_{2}	a_{3}, a_{8}	a_{3}
a_{3}	a_{4}	a_{1}
a_{4}	a_{0}, a_{9}	a_{8}
a_{5}	a_{1}	a_{7}
a_{6}		a_{0}
a_{7}		
a_{8}		

Promoting High Priority Allocations

Allocations should go to agents ranked highly in a category.
(1) Minimize sum of allocated ranks: $\sum_{a, c} x_{a, c} \cdot r_{c}(a)$

- Choose δ to grow arithmetically in rank: $\delta_{a, c}=\frac{r_{c}(a)}{2 n^{2} m}$

$$
V_{\delta}(\mathbf{x})=V(\mathbf{x})-\frac{1}{2 n^{2} m} \sum_{a, c} x_{a, c} \cdot r_{c}(a)
$$

(2) Minimize max inner cutoff: $\max _{c}\left\{\underline{\tau_{c}}\right\}=\max _{a, c}\left\{x_{a, c} \cdot r_{c}(a)\right\}$

- Choose δ to grow geometrically in rank: $\delta_{a, c}=\frac{1}{2 n m} \cdot\left(\frac{1}{n+1}\right)^{n-r_{c}(a)}$
** In subsequent work, we show maximizing the min outer cutoff is computationally hard and consider other extensions (agent utility)

Conclusion

- Reserve Allocation is a reasonable modeling framework for assignment problems with "competing" objectives
- Can locate good allocations via an IP with perturbed objective
- More efficient than existing approaches
- Provides flexibility to consider secondary objectives such as fairness

Open Questions:

Natural desiderata that locate a unique (fractional) allocation?
Can this allocation be computed efficiently?

- Our perturbation technique seems useful in other related problems

Thank You!

References

國 P. A. Pathak, T. Sönmez, M. U. Ünver, and M. B. Yenmez, "Fair allocation of vaccines, ventilators and antiviral treatments: leaving no ethical value behind in health care rationing," in Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 785-786, 2021.
D. Gale and L. S. Shapley, "College admissions and the stability of marriage," The American Mathematical Monthly, vol. 69, no. 1, pp. 9-15, 1962.
D. Delacrétaz, "Processing reserves simultaneously," in Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 345-346, 2021.
H. Aziz and F. Brandl, "Efficient, fair, and incentive-compatible healthcare rationing," in Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 103-104, 2021.

Additional Slides

Category-Stable Allocations

Category-Stable [CS]: No category can organize an agreeable trade that allows it to allocate to a higher priority agent

There is no cycle $a_{1}, \ldots, a_{j}=a_{0} \in \mathcal{A}, c_{1}, \ldots, c_{j}=c_{0} \in \mathcal{C}$ where:

- $\varphi\left(a_{i}\right)=c_{i} \quad \forall 0 \leq i<j$,
- $a_{i+1} \succeq_{c_{i}} a_{i} \quad \forall 0 \leq i<j$,
- At least one priority is strict

Category-Stable Allocations

Category-Stable [CS]: No category can organize an agreeable trade that allows it to allocate to a higher priority agent

There is no cycle $a_{1}, \ldots, a_{j}=a_{0} \in \mathcal{A}, c_{1}, \ldots, c_{j}=c_{0} \in \mathcal{C}$ where:

- $\varphi\left(a_{i}\right)=c_{i} \quad \forall 0 \leq i<j$,
- $a_{i+1} \succeq_{c_{i}} a_{i} \quad \forall 0 \leq i<j$,
- At least one priority is strict

Theorem
\mathbf{x} is a good, [CS] allocation $\Longleftrightarrow \mathbf{x}$ is a solution to $\left(P_{\delta}\right)$ for some valid δ.

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

$$
(\alpha, \gamma, \alpha, \beta)
$$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	b	b
b	c, a	a
c	d	

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

$$
(\alpha, \gamma, \alpha, \beta)
$$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	b	b
b	c, e	a
c	d	
d		
e		

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

$$
(\alpha, \gamma, \alpha, \beta)
$$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	b	b
b	c, e	a
c	d	
d		
e		

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

$$
(\alpha, \gamma, \alpha, \beta)
$$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	b	b
b	c, a	a
c	d	
d		
e		

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal

$$
(\alpha, \gamma, \alpha, \beta)
$$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	b	b
b	c, e	a
c	d	
d		
e		

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal
$(\alpha, \gamma, \alpha, \beta)$

$$
(\alpha, \alpha, \gamma, \beta)
$$

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal
$(\alpha, \gamma, \alpha, \beta)$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
$a)$	b	b
b	c, e	a
c	d	
d		
e		

Key Proof Ingredient: Serial Dictatorship Allocations

(1) Choose a (multiset) ordering of categories' units
(2) Ask categories to draft their favorite remaining agent
(3) Accept the allocation if it's maximal
$(\alpha, \gamma, \alpha, \beta)$

$\alpha(2)$	$\beta(1)$	$\gamma(1)$
a	\boxed{b}	\boxed{b}
b	c, e	a
c	d	
d		
e		

Promoting Many Allocations in each Category

Choose agents to allocate that are ranked highly in many categories.
(1) Maximize the minimum outer cutoff: $\min _{a, c}\left\{\left(1-\sum_{c^{\prime} \in \mathcal{C}} x_{a, c^{\prime}}\right) \cdot r_{c}(a)\right\}$.

This can be done efficiently if and only if we can efficiently solve the following decision problem.

FillsTier ($\mathcal{I}, k)$
Given an allocation instance $\mathcal{I}=\left(\mathcal{A}, \mathcal{C},\left\{\succeq_{c}\right\}\right)$, and $k \in \mathbb{N}$, is there a good allocation that gives to all agents within the top k tiers in some category?

[^0]
Exact Cover by 3-Sets (X3C)

Input: Ground set $E=\left\{e_{1}, e_{2}, \ldots, e_{3 n}\right\}$.
Collection of subsets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$, each $\left|S_{i}\right|=3$.
Decide: Is there a collection of subsets $\left\{S_{i_{1}}, \ldots, S_{i_{n}}\right\}$ such that $E=\bigcup_{j=1}^{n} S_{i j} ?$

Lemma
X3C is NP-Complete.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E=\left\{e_{1}, e_{2}, \ldots, e_{3 n}\right\}$.
Collection of subsets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$, each $\left|S_{i}\right|=3$.
Decide: Is there a collection of subsets $\left\{S_{i_{1}}, \ldots, S_{i_{n}}\right\}$ such that $E=\bigcup_{j=1}^{n} S_{i_{j}} ?$

Lemma

X3C is NP-Complete.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E=\left\{e_{1}, e_{2}, \ldots, e_{3 n}\right\}$.
Collection of subsets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$, each $\left|S_{i}\right|=3$.
Decide: Is there a collection of subsets $\left\{S_{i_{1}}, \ldots, S_{i_{n}}\right\}$ such that $E=\bigcup_{j=1}^{n} S_{i_{j}}$?

Lemma

X3C is NP-Complete.

The Reduction

X3C Input: $E=\left\{e_{1}, e_{2}, \ldots, e_{3 n}\right\}, \mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\} \mathrm{d}$

$$
S_{j}=\left\{e_{i_{j, 1}}, e_{i_{j, 2}}, e_{i_{j, 3}}\right\}
$$

Allocation Instance: $\mathcal{A}=E \cup \mathcal{S} \cup\left\{f_{1}, \ldots, f_{4(m-n)}\right\}, \quad k=1$

set categories		element categories		
α_{1} (4)	α_{m} (4)	$\beta_{1}(0)$	\ldots	$\beta_{3 n}(0)$
f_{1}	f_{1}	e_{1}		$e_{3 n}$
$f_{4(m-n)}$	$f_{4(m-n)}$			
S_{1}	S_{m}			
$e_{i_{1,1}}$	$e_{i_{m, 1}}$			
$e_{i 1,2}$	$e_{i_{m, 2}}$			
$e_{i_{1,3}}$	$e_{i_{m, 3}}$			

[^0]: Theorem
 FillsTier is NP-hard.

