

Mind your Ps and Qs Allocation with Priorities and Quotas

Matthew Eichhorn

Based on joint work with Sid Banerjee and David Kempe Paper: https://arxiv.org/abs/2204.13019

Matthew Eichhorn

Mind your Ps and Qs

1/22

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

• Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

• Ventilators, Vaccines, Anti-viral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

What is the "best" way to allocate care?

Commonly used 1-D priority schemes have issues

Formalizing the Reserve Allocation Setting

Agents : A, n = |A|

- Unit demand for the resource
- Indifferent about how they are allocated

Categories : C, m = |C|

Each category $c \in C$ has:

Quota : $q_c \in \mathbb{N}$, $q = \sum_{c \in C} q_c$ Eligibility : $\mathcal{E}_c \subseteq \mathcal{A}$

Priorities: Total pre-order \succeq_c over \mathcal{E}_c

- \succeq_c separates agents into ranked *priority tiers*
- $a \succeq_c a' \implies c$ gives priority to a over a'

Visualizing an Instance

lpha (2)	eta (1)	γ (1)
а	b	Ь
Ь	с,е	а
с	d	
d		
е		

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$

What properties should φ have?

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

 $|arphi^{-1}(c)| \leq q_c$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas $|arphi^{-1}(c)| \leq q_c$

Eligibility Respecting [ER]: Categories only allocate to eligible agents $\varphi^{-1}(c) \subseteq \mathcal{E}_c$

Goal: Select an allocation map $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\emptyset\}$

What properties should φ have?

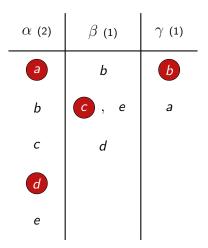
Quota Respecting QR: Categories allocate at most their quotas $|\varphi^{-1}(c)| < q_c$

Eligibility Respecting [ER]: Categories only allocate to eligible agents $\varphi^{-1}(c) \subset \mathcal{E}_{c}$

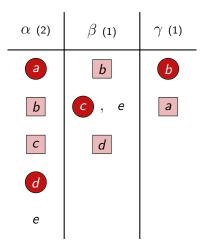
Priority Respecting [PR]: A category allocates to an agent only if all higher-priority agents have been allocated

$$\varphi(\mathsf{a}') = \mathsf{c} \ \land \ \mathsf{a} \succeq_{\mathsf{c}} \mathsf{a}' \implies \varphi(\mathsf{a}) \neq \varnothing$$

Visualizing an Allocation



Visualizing an Allocation



Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR], allocates to a strict superset of agents

$$\neg \exists \psi : \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)$$

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR], allocates to a strict superset of agents $\neg \exists \psi : \psi^{-1}(\varnothing) \subsetneq \varphi^{-1}(\varnothing)$

Is there an efficient algorithm to find allocations with these properties?

Existing Approaches

Pathak et al (2021) [1]: Variant of Deferred Acceptance [2]

- Agents have arbitrary preferences over eligible categories
- Run DA with agents proposing to categories
- [QR], [ER], [PR], not necessarily [PE]

Delacrétaz (2021) [3]: Simultaneous Reserves Algorithm

- "Water-filling" down priority lists determines who gets allocated
- [QR], [ER], [PR], not necessarily [PE]

Aziz and Brandl (2021) [4]: Reverse Rejecting Algorithm

- Iteratively certifies whether a maximal allocation can be found without allocating to a particular agent
- All four properties, but requires O(n) max matching problems

Outline

1. The Reserve Allocation Problem

2. An IP-Based Allocation Algorithm

3. Finding Fair Allocations

Toward an IP Formulation

Decision variables:
$$\mathbf{x} = \{x_{a,c}\}_{a \in \mathcal{A}, c \in \mathcal{C}}$$
. $x_{a,c} = \mathbb{I}(\varphi(a) = c)$,

Unit Demand:
$$\sum_{c \in C} x_{a,c} \leq 1$$
 $\forall a \in A$,

$$[\mathsf{QR}]: \sum_{a \in \mathcal{A}} x_{a,c} \leq q_c \qquad \forall c \in \mathcal{C},$$

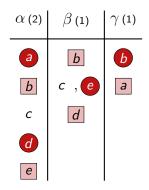
- $[\mathsf{ER}]: x_{a,c} = 0 \qquad \qquad \forall a,c : a \notin \mathcal{E}_c,$
- [PE]: "Stronger" Condition: Allocate to maximum number of agents subject to above constraints.

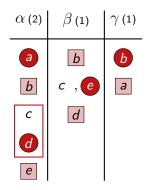
Let
$$V(\mathbf{x}) = \sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} x_{a,c}$$
 be the *total allocation* of \mathbf{x} .

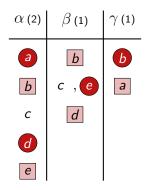
Toward an IP Formulation

(<i>P</i> ₀)				
	max	$V(\mathbf{x})$		
	s.t.	$\sum_{a\in\mathcal{A}} x_{a,c} \leq q_c$	$orall oldsymbol{c} \in \mathcal{C}$	
		$\sum_{c \in \mathcal{C}}^{a \in \mathcal{A}} x_{a,c} \leq 1$	$orall oldsymbol{a} \in \mathcal{A}$	
		$x_{a,c} = 0$	$\forall a, c : a ot\in \mathcal{E}_c$	
		$x_{a,c} \in \{0,1\}$	$orall \ m{a} \in \mathcal{A}, m{c} \in \mathcal{C}$	

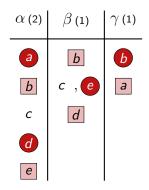
 (P_0) encodes a bipartite *b*-matching problem, which we can efficiently solve (Hopcraft-Karp, Hungarian Algorithm, etc.).





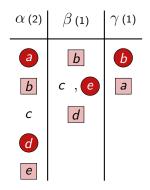


To incorporate priorities:



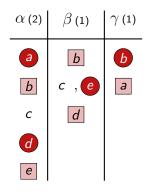
To incorporate priorities:

1 Local updates: Valid approach, can require O(mn) steps



To incorporate priorities:

- **Q** Local updates: Valid approach, can require O(mn) steps
- **2** Add constraints: We lose IP structure (integrality of corner pts)

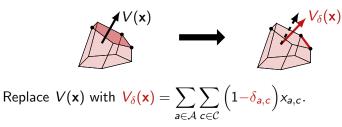


To incorporate priorities:

- **Q** Local updates: Valid approach, can require O(mn) steps
- Ø Add constraints: We lose IP structure (integrality of corner pts)
- One of the IP objective

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities



Interpreting $\delta_{a,c}$ as the cost of allocating *a* through *c*, a valid δ satisfies:

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Replace $V(\mathbf{x})$ with $V_{\delta}(\mathbf{x}) = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{c \in \mathcal{C}} \left(1 - \delta_{\mathbf{a},c}\right) x_{\mathbf{a},c}.$

Interpreting $\delta_{a,c}$ as the cost of allocating a through c, a valid δ satisfies:

Small Effect: Costs don't disincentivize allocation $\sum \sum \delta_{a,c} \leq \frac{1}{2}$

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

 $\text{Replace } V(\mathbf{x}) \text{ with } V_{\delta}(\mathbf{x}) = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{c \in \mathcal{C}} \left(1 - \delta_{\mathbf{a}, c} \right) x_{\mathbf{a}, c}.$

Interpreting $\delta_{a,c}$ as the cost of allocating *a* through *c*, a valid δ satisfies:

Small Effect: Costs don't disincentivize allocation

$$\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} \delta_{a,c} \leq \frac{1}{2}$$

Consistent: Prioritized agents have lower cost $a \succeq_c a' \iff \delta_{a,c} \le \delta_{a',c}$

Choosing the Perturbation Weights

Given any $\delta,$ define the IP

(P_{δ})				
	max	$V_{\delta}({\sf x})$		
	s.t.	$\sum_{{m{a}}\in\mathcal{A}} x_{{m{a}},{m{c}}} \leq q_{m{c}}$	$orall oldsymbol{c} \in \mathcal{C}$	
		$\sum_{oldsymbol{c}\in\mathcal{C}} x_{oldsymbol{a},oldsymbol{c}} \leq 1$	$orall oldsymbol{a} \in \mathcal{A}$	
		$x_{a,c} = 0$	$\forall a, c : a ot\in \mathcal{E}_c$	
		$x_{a,c} \in \{0,1\}$	$orall \mathbf{a} \in \mathcal{A}, \mathbf{c} \in \mathcal{C}$	

Choosing the Perturbation Weights

Given any $\delta,$ define the IP

(P_{δ})				
	max	$V_{\delta}({\sf x})$		
	s.t.	$\sum_{{\sf a}\in \mathcal{A}} x_{{\sf a},{\sf c}} \leq q_{{\sf c}}$	$orall \ m{c} \in \mathcal{C}$	
		$\sum_{oldsymbol{c}\in\mathcal{C}} x_{oldsymbol{a},oldsymbol{c}} \leq 1$	$orall \mathbf{a} \in \mathcal{A}$	
		$x_{a,c} = 0$	$\forall a, c : a \notin \mathcal{E}_c$	
		$x_{a,c} \in \{0,1\}$	$orall m{a} \in \mathcal{A}, m{c} \in \mathcal{C}$	

Theorem

Let \mathbf{x}^* be a solution of (P_{δ}) for any valid δ . Then, \mathbf{x}^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Matthew Eichhorn

Theorem

Let \mathbf{x}^* be a solution of (P_{δ}) for any valid δ . Then, \mathbf{x}^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Proof Sketch. [ER],[QR]: Ensured by (P_{δ}) constraints. [PR]: δ is Consistent. [PE]: Small Effect of δ and integrality: $V(\hat{\mathbf{x}}) \ge V(\mathbf{x}^*) \ge V_{\delta}(\mathbf{x}^*) \ge V_{\delta}(\hat{\mathbf{x}}) = V(\hat{\mathbf{x}}) - \sum_{a,c} \delta_{a,c} \ge V(\hat{\mathbf{x}}) - \frac{1}{2}.$ so $V(\hat{\mathbf{x}}) = V(\mathbf{x}^*)$ for a solution $\hat{\mathbf{x}}$ to (P_0) .

- 1. The Reserve Allocation Problem
- 2. An IP-Based Allocation Algorithm
- **3. Finding Fair Allocations**

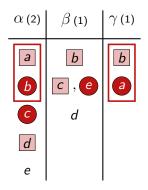
Realizability of Good Allocations

Previous theorem shows that any valid δ can locate a good allocation.

Converse result:

Theorem (Informal)

All 'meaningful' good allocations are solutions to (P_{δ}) for some valid δ .



The restrictions we've placed on δ are minimal.

We can carefully choose δ to find allocations with additional properties.

Example: Have perturbations on different orders of magnitude in different categories to enforce a "priority over categories"

Matthew Eichhorn

Mind your Ps and Qs

Fair Allocations

Auditability: What info must categories reveal to assure agents that the allocation φ is fair?

Auditability: What info must categories reveal to assure agents that the allocation φ is fair?

- For each eligible agent a ∈ E_c, let r_c(a) be their priority tier in c (1 = highest priority, 2 = next priority tier, etc.)
- In each $c \in C$, $\tau_c \in \mathbb{N}$ is a *cutoff* if:

All agents allocated in c sit at or above the cutoff

$$\varphi(a) = c \implies r_c(a) \leq \tau_c,$$

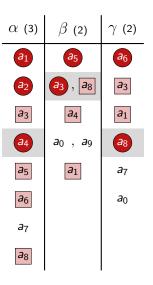
2 All un-allocated agents sit at or below the cutoff

$$\varphi(a) = \varnothing \implies r_c(a) \ge \tau_c.$$

Notable Cutoff Tiers

• Inner Cutoff: For each $c \in C$,

$$\underline{\tau_c} = \max_{a \in \varphi^{-1}(c)} \{ r_c(a) \}.$$



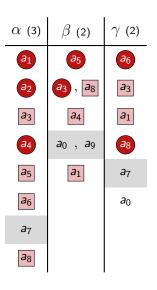
Notable Cutoff Tiers

• Inner Cutoff: For each $c \in C$,

$$\underline{\tau_c} = \max_{a \in \varphi^{-1}(c)} \{ r_c(a) \}.$$

• Outer Cutoff: For each
$$c \in \mathcal{C}$$
,

$$\overline{\tau_c} = \min_{a \in \varphi^{-1}(\emptyset)} \{ r_c(a) \}.$$



Notable Cutoff Tiers

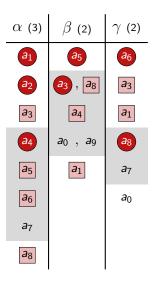
• Inner Cutoff: For each $c \in C$,

$$\underline{\tau_c} = \max_{a \in \varphi^{-1}(c)} \{ r_c(a) \}.$$

• Outer Cutoff: For each $c \in C$,

$$\overline{\tau_{c}} = \min_{a \in \varphi^{-1}(\emptyset)} \{ r_{c}(a) \}.$$

 Every {τ_c} has <u>τ_c</u> ≤ τ_c ≤ τ_c for each c ∈ C.



Promoting High Priority Allocations

Allocations should go to agents ranked highly in a category.

• Minimize sum of allocated ranks: $\sum_{a,c} x_{a,c} \cdot r_c(a)$

• Choose δ to grow arithmetically in rank: $\delta_{a,c} = \frac{r_c(a)}{2n^2m}$

$$V_{\delta}(\mathbf{x}) = V(\mathbf{x}) - \frac{1}{2n^2m} \sum_{a,c} x_{a,c} \cdot r_c(a)$$

2 Minimize max inner cutoff: $\max_{c} \left\{ \underline{\tau_c} \right\} = \max_{a,c} \left\{ x_{a,c} \cdot r_c(a) \right\}$

• Choose δ to grow geometrically in rank: $\delta_{a,c} = \frac{1}{2nm} \cdot \left(\frac{1}{n+1}\right)^{n-r_c(a)}$

** In subsequent work, we show maximizing the min outer cutoff is computationally hard and consider other extensions (agent utility)

Conclusion

- Reserve Allocation is a reasonable modeling framework for assignment problems with "competing" objectives
- Can locate good allocations via an IP with perturbed objective
 - More efficient than existing approaches
 - Provides flexibility to consider secondary objectives such as fairness

Open Questions:

Natural desiderata that locate a unique (fractional) allocation?

Can this allocation be computed efficiently?

• Our perturbation technique seems useful in other related problems

Thank You!

References

- P. A. Pathak, T. Sönmez, M. U. Ünver, and M. B. Yenmez, "Fair allocation of vaccines, ventilators and antiviral treatments: leaving no ethical value behind in health care rationing," in *Proceedings of the* 22nd ACM Conference on Economics and Computation, pp. 785–786, 2021.
- D. Gale and L. S. Shapley, "College admissions and the stability of marriage," *The American Mathematical Monthly*, vol. 69, no. 1, pp. 9–15, 1962.
- D. Delacrétaz, "Processing reserves simultaneously," in Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 345–346, 2021.
- H. Aziz and F. Brandl, "Efficient, fair, and incentive-compatible healthcare rationing," in *Proceedings of the 22nd ACM Conference on Economics and Computation*, pp. 103–104, 2021.

Additional Slides

Category-Stable [CS]: No category can organize an agreeable trade that allows it to allocate to a higher priority agent

There is no cycle $a_1, \ldots, a_j = a_0 \in \mathcal{A}, c_1, \ldots, c_j = c_0 \in \mathcal{C}$ where:

- $\varphi(a_i) = c_i \quad \forall \ 0 \leq i < j,$
- $a_{i+1} \succeq_{c_i} a_i \quad \forall \ 0 \le i < j,$
- At least one priority is strict

Category-Stable [CS]: No category can organize an agreeable trade that allows it to allocate to a higher priority agent

There is no cycle
$$a_1,\ldots,a_j=a_0\in\mathcal{A},\ c_1,\ldots,c_j=c_0\in\mathcal{C}$$
 where:

- $\varphi(a_i) = c_i \quad \forall \ 0 \leq i < j,$
- $a_{i+1} \succeq_{c_i} a_i \quad \forall \ 0 \le i < j$,
- At least one priority is strict

Theorem

x is a good, [CS] allocation \iff **x** is a solution to (P_{δ}) for some valid δ .

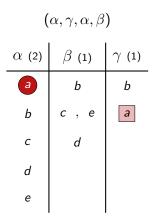
- O Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal

- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal

 \sim

$(lpha,\gamma,lpha,eta)$						
lpha (2)	eta (1)	γ (1)				
а	b	Ь				
Ь	с,е	а				
с	d					
d						
е						

- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal



- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal

$$(\alpha, \gamma, \alpha, \beta)$$

$$\begin{array}{c|c} \alpha & (2) & \beta & (1) & \gamma & (1) \\ \hline a & b & b \\ \hline b & c & , & e \\ \hline b & c & , & e \\ \hline c & d & \\ d & & \\ e & & \\ \end{array}$$

- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal

$$(\alpha, \gamma, \alpha, \beta)$$

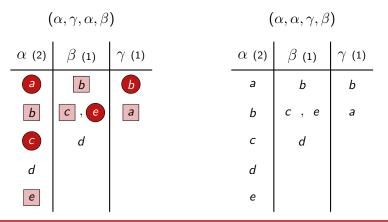
$$\begin{array}{c|cccc}
\alpha & (2) & \beta & (1) & \gamma & (1) \\
\hline a & b & b \\
\hline b & c & , e & a \\
\hline c & d & \\
d & \\
e & & \\
\end{array}$$

- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal

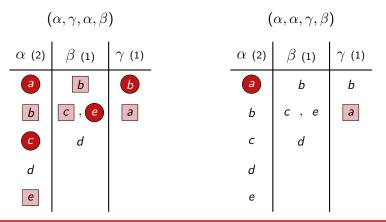
$$(\alpha, \gamma, \alpha, \beta)$$

$$\begin{array}{c|c} \alpha & (2) & \beta & (1) & \gamma & (1) \\ \hline a & b & b \\ \hline b & c & e \\ \hline c & d \\ \hline d & & \\ e & & \\ \end{array}$$

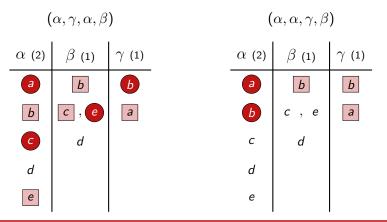
- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal



- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal



- Choose a (multiset) ordering of categories' units
- Ask categories to draft their favorite remaining agent
- O Accept the allocation if it's maximal



Promoting Many Allocations in each Category

Choose agents to allocate that are ranked highly in many categories.

• Maximize the minimum outer cutoff:
$$\min_{a,c} \left\{ \left(1 - \sum_{c' \in \mathcal{C}} x_{a,c'}\right) \cdot r_c(a) \right\}.$$

This can be done efficiently if and only if we can efficiently solve the following decision problem.

FILLSTIER (\mathcal{I}, k)

Given an allocation instance $\mathcal{I} = (\mathcal{A}, \mathcal{C}, \{\succeq_c\})$, and $k \in \mathbb{N}$, is there a good allocation that gives to all agents within the top k tiers in some category?

Theorem

FILLSTIER is NP-hard.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

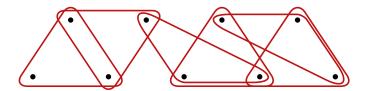
Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?

Lemma X3C is NP-Complete.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?



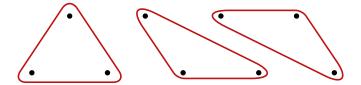
Lemma

X3C is NP-Complete.

Exact Cover by 3-Sets (X3C)

Input: Ground set $E = \{e_1, e_2, \dots, e_{3n}\}$. Collection of subsets $S = \{S_1, \dots, S_m\}$, each $|S_i| = 3$.

Decide: Is there a collection of subsets $\{S_{i_1}, \ldots, S_{i_n}\}$ such that $E = \bigcup_{j=1}^n S_{i_j}$?



Lemma

X3C is NP-Complete.

The Reduction

X3C Input:
$$E = \{e_1, e_2, \dots, e_{3n}\}, S = \{S_1, \dots, S_m\}d$$

 $S_j = \{e_{i_{j,1}}, e_{i_{j,2}}, e_{i_{j,3}}\}$

Allocation Instance: $\mathcal{A} = E \cup \mathcal{S} \cup \{f_1, \dots, f_{4(m-n)}\}, \quad k = 1$

set categories		element categories			
$lpha_1$ (4)	•••	α_m (4)	eta_1 (0)	•••	eta_{3n} (0)
f_1		f_1	e_1		e _{3n}
÷		÷			
$f_{4(m-n)}$		$f_{4(m-n)}$			
$f_{4(m-n)}$ S_1		$f_{4(m-n)} \\ S_m$			
$e_{i_{1,1}}$		$e_{i_{m,1}}$			
$e_{i_{1,2}} \\ e_{i_{1,3}}$		$e_{i_{m,2}}$			
$e_{i_{1,3}}$		$e_{i_{m,2}}$ $e_{i_{m,3}}$			

Matthew Eichhorn

Mind your Ps and Qs