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Abstract

In many settings, such as the rationing of medical care and supplies, university admissions, and

the assignment of public housing, the decision of who receives an allocation can be justified by

various normative criteria (ethical, financial, legal, etc.). These criteria can influence priorities and

restrict the number of units available to particular demographics. We consider a setting wherein

a set of identical items must be distributed among unit-demand applicants. The items are divided

across a set of categories (each with an allocation quota), and each category has a priority ordering

over its eligible applicants. Building on previous work, we define a set of natural desiderata for

allocations. We use techniques from linear and integer programming to give a polynomial-time

procedure for finding Pareto efficient allocations satisfying these desiderata. The clean formulation

of our algorithm allows us to more easily derive known results in this space and provides the

flexibility to consider alternate objectives and enforce various notions of equity between categories.

1. Introduction

The way in which a society distributes its resources can have profound impacts on the popula-

tion. While not new, this fact has been forcefully reintroduced into public consciousness by the

COVID-19 pandemic. Scarcities brought about by the pandemic have caused researchers in many

fields — including doctors, ethicists, psychologists, and economists — to question how we allocate

care (White and Lo, 2020; Andrews et al., 2021; Emanuel et al., 2020; Binkley and Kemp, 2020;

Pathak et al., 2021). Finding a good allocation is far from straightforward, as legal, financial, and

ethical considerations can place nuanced requirements on the set of allowable allocations. As ex-

amples of such restrictions, consider the following settings:

Academic Fellowships: Alumni benefactors of an institution may establish scholarship funds to

encourage the enrollment of students with certain demographics, backgrounds, skills, etc. To

make use of these funds, the university must admit students who meet the qualifications of

these awards. We use this as our motivating example throughout.

Medical Care: To ensure an equitable distribution of vaccines, the COVAX program has set stan-

dards for the distribution of vaccines to developing countries, as well as for the prioritization

of vaccinating target groups including healthcare workers, the elderly, and individuals with

comorbidities (COVAX). This application is discussed in detail by Pathak et al. (2021).
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Primary School Enrollment: In Boston, half of each school’s seats are reserved for students in its

neighborhood, and a school must give priority to students with siblings also attending that

school (Abdulkadiroğlu et al., 2005). In Chicago, a school integration policy requires that

magnet schools allocate roughly one fourth of their seats to students in each of four socio-

economic tiers (Benabbou et al., 2019). Chile’s School Inclusion Law defines which factors

can and cannot be used to prioritize students, and ensures equitable admission to students

with economic hardships (Correa et al., 2021).

Public Housing: In Singapore, a 1989 Ethnic Integration Policy places a quota on the number of

units in each public housing development that may be allocated to each of three major ethnic

groups: Chinese, Malay, and Indian/Other (Benabbou et al., 2019, 2018).

We consider a model of reserve systems introduced by Pathak et al. (2021), which captures a set of

common features shared by all of the settings above to varying extents. The formal model is given

in Section 2, but we briefly summarize these features below:

Rationing and Quotas: The available resource is less than the demand, and so must be rationed.

To implement the rationing, the total resource budget is split into a quota qc for each of

multiple allocation categories c ∈ C. For example, in the case of academic fellowships, quo-

tas could be reserved for local students, under-represented minorities, international students,

family members of alumni, and a general pool.

Eligibility and Priority Rules: Each category has criteria for determining the eligibility and pri-

ority of each agent. In our model, this corresponds to each category having a preorder over

a subset of students who meet the eligibility criterion for that category. Agents may be eli-

gible for multiple categories, so categories may need to coordinate allocations. Importantly,

there may be no natural way to compare agents with the same rank in different categories.

Note also that the eligibility may be defined independently of the quota, and thus may lead to

unavoidable wastage in any allocation.

Agent Indifference: Each agent wants a single unit of the resource, but they are indifferent as to

which category awards them the resource1. More generally, agents can get allocations in [0, 1]
from multiple categories, such that the total allocation is bounded by 1; agents’ utilities are

assumed to be non-decreasing in their total allocation. For example, in the case of academic

fellowships, a student can receive partial support from different funding sources, with a cap

on the total award.

Pathak et al. (2021) argue that this setting captures many critical features of quota-based ra-

tioning. It emphasizes the role of categories and quotas as enforcing incomparable norms, rather

than maximizing some explicit utility. On the other hand, agent indifference is tautological for re-

sources like vaccines/medical supplies/scholarships; it also holds to an extent for (limited) resources

like school seats and housing, where the difference in utility from receiving vs. not receiving an al-

location vastly outweighs inter-category utility differences.

The core question now is what features are desired for an allocation in such a setting. To this

end, Pathak et al. (2021) posit a set of three ‘axiomatic’ requirements. The first two make natural

1. We note that this feature may not be true in all of the examples. For example, families are likely to have preferences

about which schools their students attend and the location of their housing.
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impositions that each category allocates as much as possible while respecting its quota, and also

allocates only to eligible agents; these are standard and easily implemented. The third axiom ensures

that priorities are respected, by requiring that a category never allocate to an agent if a higher-priority

agent does not have full allocation; this is a trickier requirement, in particular, when combined with

partial eligibility lists. Indeed, past work on this problem (Pathak et al., 2021; Delacrétaz, 2021)

eschews finding Pareto efficient allocations, and while Aziz and Brandl (2021) provide a scheme to

find a maximal (and hence Pareto efficient) allocation, they do not give any insight into the structure

of satisfactory allocations, or how one can select from them to improve any secondary performance

measure such as equity of allocations.

1.1. Our Contributions

Our work considers the setting described above (and formalized in Section 2), and attempts to pro-

vide a simple characterization and computational procedure for finding satisfactory allocations:

those obeying the main axioms of previous work (respect for eligibility, quotas, and priority), but in

addition, guaranteeing Pareto efficiency from the viewpoint of agents, and stability from the view-

point of categories. To this end, our main result (in Section 3) shows that satisfactory allocations

can be realized as the solutions to a simple weighted matching LP. In particular, our characterization

uses a technique from integer programming whereby we perturb the unweighted matching LP while

ensuring that its solutions are satisfactory allocations. Moreover, we show that in fact all satisfac-

tory integer allocations can be realized as optimal matchings under some appropriate perturbation

of edge weights.

Intuitively, our use of perturbations allow us to transform the problem with (partial) cardinal

preferences to an ordinal welfare maximization problem. This reformulation allows us not only to

more easily derive known results, but enables several new insights and extensions. In Section 4, we

show that our perturbed LP approach leads to allocations that satisfy additional desiderata, which are

natural for this setting, but are violated by existing algorithms. Next, our approach admits a simple

extension in settings where quotas are not binding, and some units can be de-reserved by categories

to increase overall welfare. In terms of insights, we show that every Pareto optimal solution turns

out to allocate the same number of units, which moreover equals the optimal matching without

priority requirements. We also give an efficient procedure to identify agents who are present in all

satisfactory allocations. Finally (and most importantly), our approach gives new tools for selecting

satisfactory allocations to achieve some secondary objective — in Section 5, we describe how we

can use perturbations to optimize two different notions of equity in our setting.

1.2. Related Work

As mentioned, we build on the recent work of Pathak et al. (2021), which has also inspired sev-

eral other follow-up papers, with two of particular note. On the question of allocation selection,

Delacrétaz (2021) notes that the policy of Pathak et al. (2021) is not uniquely specified, and differ-

ent choices can induce biases in the allocation. He then attempts to allay this concern by introducing

a waterfilling-style simultaneous allocation procedure that leads to a unique (fractional) outcome.

On the other hand, Aziz and Brandl (2021) introduce a procedure that ensures a maximum-size

allocation, even with partial eligibility. We discuss these policies, and highlight some of their short-

comings in Appendix A. In the interest of space, we refer the reader to the thorough discussion of

related models and practical applications of this setting presented in these papers.

3



BANERJEE EICHHORN KEMPE

A closely related problem to reserve allocation is fair division, where agents have preferences

over (non-identical) items, and we seek a Pareto efficient division. There are key distinctions be-

tween these models with regard to notions of stability and utility: in fair division, both the prefer-

ences that determine the stability and efficiency of a solution belong to agents; however, in reserve

allocation, stability is dictated by category preferences while utility is dictated by agent allocations.

Despite these semantic differences, the structure of desired allocations in both turn out to be quite

similar2. In particular, Saban and Sethuraman (2015) consider the problem of determining the prob-

ability of a match under random serial dictatorship, and describe a polynomial-time procedure for

locating “necessary” (agent, object) pairs which is similar to our discussion of unanimous agents

(Section 4.3). Moreover, Biró and Gudmundsson (2021) propose using welfare maximization to

compute Pareto efficient fair division solutions. The perturbation of the b-matching polytope that

we discuss in Section 3 serves as a unifying viewpoint for these problems.

Finally, settings with two-sided preferences have a long history, stemming from Gale and Shap-

ley’s seminal work on the deferred acceptance (DA) algorithm (Gale and Shapley, 1962). While a

fairly robust algorithm, DA can fail to compute a Pareto efficient allocation in the case of indiffer-

ences, as pointed out by Erdil and Ergin (2017). They describe an iterative procedure to Pareto im-

prove an allocation while preserving its stability, illustrating that notions of stability and efficiency

can be simultaneously realized. The flow-augmentation ideas in their improvement procedure share

commonalities with our arguments in Section 3.

2. Model

2.1. Basic Setting

Resources, Categories, and Agents: A set A of n agents compete for q indistinguishable, indivis-

ible units of a resource (admission, residence, vaccine, etc.). The units are distributed to a set C of

m categories, through which they are allocated. Each category c ∈ C is given a quota of qc units

to allocate, such that q =
∑

c qc. Each agent wants one unit of the resource but is indifferent as to

which category provides their allocation.

Eligibility and Priorities: Each category partitions A into a set of eligible and ineligible agents.

The eligible agents are further partitioned into priority tiers.

Formally, each category c ∈ C has a total preorder �c over A ∪ {θc}, where θc is an additional

symbol used to represent the eligibility threshold in category c. Given any two agents a, a′ ∈ A,

a �c a
′ denotes that a has weakly higher priority than a′ in c. We write a ∼c a

′ when a and a′ have

the same priority in c, i.e., when a �c a
′ and a′ �c a; we write a ≻c a

′ when a �c a
′ and a′ 6�c a, so

a has (strictly) higher priority in c. We assume that θc 6∼c a for any a ∈ A, and interpret the eligible

agents in c as those a with a ≻c θc. Given any agent a and any category c, we define the ranking of

a in c, denoted by rc(a), to be the length ℓ of the longest chain a1 ≻c a2 ≻c · · · ≻c aℓ = a with

each ai ∈ A. Note that 1 ≤ rc(a) ≤ n.

We visualize category quotas/priorities/eligibility using charts in the style of Fig. 1.

Allocations: Our goal is to find an allocation x : A × C → [0, 1]. We interpret xa,c as the

probability that agent a receives an allocation from category c; the desired marginal probabilities

can be realized via a standard Birkhoff-von Neumann decomposition of fractional allocations as

2. Indeed, our results provide some intuition as to why this is the case, as when viewed as an ordinal welfare maximiza-

tion problem, it is clear that the two sides of the market are symmetric.
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α (1) β (1) γ (1)

c a b , c

b a

Figure 1: An instance with C = {α, β, γ} with quotas (1, 1, 1), andA = {a, b, c}. In each category

c, the agents listed in the i’th row have ranking rc(·) = i, and the threshold θc is just

below the last listed agent (that is, only eligible agents are listed).

a convex combination of integral matchings. Note that our unit-demand assumption allows us to

restrict attention to the case where
∑

c xa,c ≤ 1 for each a ∈ A. Note also that when each xa,c ∈
{0, 1}, x coincides with an allocation map ϕ : A → C ∪ {∅}.

2.2. Primary Desiderata for Satisfactory Allocations

A natural question now, given the above setting, is which properties make an allocation “satisfac-

tory.” The following two desiderata were proposed as axioms by Pathak et al. (2021) (and adopted

by Delacrétaz (2021) and Aziz and Brandl (2021)) as a natural formalism implied by the agent eli-

gibility and priorities. We inherit the statements for fractional matchings from Delacrétaz, as these

naturally generalize their integral counterparts.

[ER] Eligibility Respecting: No agent receives any allocation through a category for which they

are ineligible. Formally, we have

xa,c > 0 =⇒ a ≻c θc for all a ∈ A, c ∈ C.

[PR] Priority Respecting: If an agent a receives any allocation through a category c, then each

agent a′ with higher priority in c is fully allocated. Formally

xa,c > 0 ∧ a′ ≻c a =⇒
∑

c′∈C

xa′,c′ = 1 for all a ∈ A, c ∈ C.

Another axiom states that no category’s allocation exceeds its quota. (This is either explicitly stated

or implied in (Pathak et al., 2021; Delacrétaz, 2021; Aziz and Brandl, 2021).)

[QR] Quota Respecting: The total allocation from category c is at most qc. Formally
∑

a∈A

xa,c ≤ qc for all c ∈ C.

We note that this is a somewhat restrictive assumption, and it may lead to inefficiencies due to

incomplete allocations. Indeed, the idea of de-reserving unfilled quotas has been considered with

regard to affirmative action policies in India (Aygun and Turhan, 2021) (for a thorough introduction

on this subject, see (Sönmez et al., 2019)). In Section 4.2, we introduce an alternate setting that

allows for some de-reservation of quotas if it results in more allocation.

Henceforth, unless stated otherwise, any allocation we consider is assumed to satisfy [ER],

[PR] and [QR]. Next, from the agents’ standpoint, a natural desideratum for an allocation is that it

be Pareto efficient.
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[PE] Pareto Efficient: There is no alternate allocation y satisfying [ER], [QR], [PR] in which one

agent gets a strictly higher allocation and no agent receives a lower allocation.

there is an a ∈ A :
∑

c∈C

ya,c >
∑

c∈C

xa,c =⇒ there is an a′ ∈ A :
∑

c∈C

ya′,c <
∑

c∈C

xa′,c.

While [PE] is clearly a desirable property, it is a stronger efficiency requirement than those con-

sidered in prior work; in particular, it implies the “non-wastefulness” axiom used in (Pathak et al.,

2021; Delacrétaz, 2021; Aziz and Brandl, 2021). Although the “maximum size matching” property

of Aziz and Brandl (2021) appears to be stronger than Pareto efficiency, we argue that they are in

fact equivalent in Section 3.1. We find Pareto efficiency to be a more natural desideratum.

In contrast to two-sided matching settings, we only consider [PE] from the point of the agents —

this builds on the idea that category priorities and eligibility are used in such settings to implement

normative criteria, rather than having associated utilitarian implications. Nevertheless, from the

point of view of implementation/interpretation, it may still be useful to consider when an allocation

can be considered satisfactory from the viewpoint of the categories. Our final primary desideratum

addresses this point.

[S] Stable: There is no way for categories to transfer allocation to agents of higher priority. More

formally, there do not exist agents a0, a1, . . . , aj = a0 and categories c0, c1, . . . , cj = c0 such

that xai,ci > 0 and ai+1 ≻ci ai for each 0 ≤ i < j.

This property had not been considered in the earlier literature; we argue that it is natural in settings

where the categories can derive some secondary utility from their allocated agents. As a concrete

example, consider a university or funding agency awarding fellowships to students, where each

category corresponds to a donor who has established specific criteria for who should be awarded

from their donated funds. Such donors may want to advertise their awardees, and thus want them to

reflect their criteria as much as possible.

In this work, we consider the above to constitute the primary desiderata for any allocation

Definition 1 (Satisfactory Allocation) An allocation is satisfactory if it satisfies all of the primary

desiderata: [ER], [PR], [QR], [PE], and [S].

Fig. 2 depicts some allocations of the instance from Fig. 1, and discusses which desiderata they sat-

isfy/violate. We note again that while the first three have all been considered in (Pathak et al., 2021;

Delacrétaz, 2021; Aziz and Brandl, 2021), [PE] is only proposed as being desirable but not imple-

mented in (Pathak et al., 2021; Delacrétaz, 2021) (and is indirectly considered in (Aziz and Brandl,

2021)), while [S] is not considered in any of these works.

2.3. Additional Properties of Allocation Rules

In light of the above, the foremost property of any allocation rule is that in any given instance,

it returns a satisfactory allocation (i.e., one which obeys the above primary desiderata). There are

several additional features that one could desire from allocation rules in our setting. While we do not

a priori impose that these be satisfied by a rule under consideration, they turn out to be immediate

consequences of our approach.

The first property we consider reflects a natural desire that under a given rule, agents need not

be un-allocated when any category increases its quota (holding all else the same). We consider

6
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Allocation 1

α (1) β (1) γ (1)

c a b , c

b a

Allocation 2

α (1) β (1) γ (1)

c a b , c

b a

Allocation 3

α (1) β (1) γ (1)

c a b , c
b a

Allocation 4

α (1) β (1) γ (1)

c a b , c

b a

Figure 2: Four (integer) allocations of the instance from Fig. 1. Allocation 1 is the (unique) satis-

factory allocation in this instance. Allocation 2 violates [PR]: b is allocated in category

β, but a, who has higher priority, remains unallocated. Allocation 3 violates [PE], as it

is Pareto dominated by Allocation 1. Allocation 4 violates [S]: categories β and γ can

switch and each allocate to a higher-priority agent.

possibly non-deterministic rules ψ mapping instances to non-empty sets of allocations, and define

ψ(I) to be the set of allocations that could be produced on input I .

Monotonicity [M]: The allocation rule ψ is monotone if (and only if) the following holds for all

pairs of matching instances I, I ′ with the same A, C, {�c}, and with q′c ≥ qc for each c: For

every x ∈ ψ(I), either x ∈ ψ(I ′), or there exists an allocation y ∈ ψ(I ′) which Pareto

dominates x.

Next, we turn to strategic considerations. Ideally we would like our allocation rule to be resilient to

misreporting of priorities/eligibility. However, Example 1 shows that categories can improve their

outcome through strategic manipulation.

Example 1 Consider the following allocation instance:

α (1) β (1)

a a

b c

While any satisfactory allocation must fully allocate to a, the remaining unit can be arbitrarily

divided among b and c. Knowing β’s priority list, α can choose to declare a ineligible, which leads

to both of α’s eligible agents receiving a full allocation: a through β and b through α.

A weaker form of strategic behavior by categories (that turns out is possible to disincentivize) is one

where a category subdivides and reapportions its quotas. The Sybil-proofness property requires that

such manipulation does not give categories a strategic advantage.

Sybil-proofness [SP]: No category c can split into multiple categories c1, . . . , ck , each with iden-

tical priority lists to c and with
∑

i∈[k] qci = qc, in a way that increases the total allocation

of their eligible agents. Similarly, categories with identical preference lists cannot merge to

increase the allocation of their eligible agents.

From the vantage point of the agents, a natural notion of strategyproofness proposed by Aziz and Brandl

(2021) is that no agent benefits by intentionally worsening their ranking (for example, by scoring

poorly on a placement exam).

7



BANERJEE EICHHORN KEMPE

Strategyproofness [ST]: No agent can receive a greater allocation by decreasing their priority in a

category.

Finally, an important desideratum, in particular for large instances, is that the allocation rule be

efficiently computable.

Computational Efficiency [CE]: The allocation rule produces a satisfactory allocation in time

polynomial in m, n, and q.

In Appendix A, we outline the existing algorithms for this problem (Pathak et al., 2021; Delacrétaz,

2021; Aziz and Brandl, 2021), and discuss ways in which they can violate our desiderata. On the

other hand, in Section 4.1, we discuss how the class of policies we propose next naturally satisfies

all of them.

3. Satisfactory Allocations via Linear Programming

In this section, we give our main result: we show that for any given instance, a satisfactory allocation

can be found using a simple linear program. Thereto, note first that the unit demand of each agent,

as well as the [ER] and [QR] constraints, together can be encoded as a b-matching polytope. Any

maximizer of the total allocation V (x) :=
∑

a∈A

∑

c∈C xa,c (satisfying the other desiderata) is

Pareto efficient. Therefore, we can enforce Pareto efficiency by taking V (x) as our objective. Later,

we argue that our consideration of maximal allocations is without restriction. Overall, this gives the

following b-matching LP:

(P ) max V (x)

subject to
∑

a∈A

xa,c ≤ qc for all c ∈ C

∑

c∈C

xa,c ≤ 1 for all a ∈ A

xa,c = 0 for all a ∈ A, c ∈ C with θc ≻c a

xa,c ≥ 0 for all a ∈ A, c ∈ C.

As written, (P ) does not express any notion of respect for priorities or stability. However, while

encoding the feasible set under these constraints appears non-trivial, the critical observation is that

we can perturb the coefficient of each xa,c in the objective to 1− δa,c in such a way as to ensure that

any optimal solution to the perturbed LP satisfies both of these desiderata. To do this, we introduce

the notion of a valid perturbation.

Definition 2 (Valid Perturbation Profile) A perturbation profile (δa,c)a∈A,c∈C is valid if it has the

following three properties:

Positivity: Each δa,c > 0.

Small Effect:
∑

a∈A

∑

c∈C

δa,c <
1
3 .

8
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Consistency: a �c a
′ if and only if δa′,c ≥ δa,c

Now, we consider the modified objective

Vδ(x) :=
∑

a∈A

∑

c∈C

xa,c
(

1− δa,c
)

= V (x)−
∑

a∈A

∑

c∈C

δa,c xa,c.

We let (Pδ) be the linear program with the same constraint polytope as (P ), but with objective

Vδ(x). The following theorem shows that the solutions to these perturbed linear programs give

allocations satisfying all of our desiderata.

Theorem 3 Let δ be any valid perturbation profile, and let x∗ be a solution to (Pδ). Then, x∗ is a

satisfactory allocation.

Proof The constraints immediately ensure that any feasible solution of (Pδ) satisfies [ER] and

[QR]. To establish [PR], let x be a feasible solution, a, a′ be agents and c a category such that

a′ ≻c a, xa,c = ε1 > 0 and
∑

c′ xa′,c′ = 1− ε2 < 1. Then, we can decrease xa,c and increase xa′,c
by min(ε1, ε2) without violating any constraints. Since δ is consistent, we have δa,c < δa′,c, so the

reassignment strictly increases the objective value. Thus, such an x is not optimal, and x
∗, being

optimal, satisfies [PR].

To establish [S], for a feasible LP solution x, let a1, . . . , aj = a0 be agents and c1, . . . cj = c0
be categories with xai,ci > 0 and ai+1 ≻ci ai for each 0 ≤ i < j. By the unit demand constraints,

note that each xci,ai+1
< 1, so we may define

ε := min
{

min
i=0,...,j−1

{

xai,ci
}

, min
i=0,...,j−1

{

1− xai+1,ci

}

}

> 0.

Let y be the allocation obtained by decreasing each xai,ci by ε and increasing each xai+1,ci by ε.
Note that y remains feasible in (Pδ). Since δ is consistent, we have δai+1,ci < δai,ci , for each

0 ≤ i < j. Therefore,

Vδ(y) − Vδ(x) = ε ·

j−1
∑

i=0

(δai,ci − δai+1,ci) > 0.

Again, such an x cannot be optimal; hence, x∗, being optimal, satisfies [S].

It remains to establish [PE]. Note that for any optimal solution x̂ to (P ), we have

V (x∗) ≥ Vδ(x
∗) ≥ Vδ(x̂) = V (x̂)−

∑

a∈A

∑

c∈C

x̂a,cδa,c ≥ V (x̂)−
∑

a∈A

∑

c∈C

δa,c > V (x̂)−
1

3
.

Here, the first inequality follows since each x∗a,c, δa,c ≥ 0. The second inequality follows since x
∗

is an optimal solution to (Pδ). The third follows because the unit demand constraints ensure that

each x̂a,c ≤ 1. Finally, the fourth inequality follows since δ has small effect.

Additionally, x̂ maximizes V among all feasible solutions to (P ), which include x
∗. Therefore,

V (x̂) ≥ V (x∗). Combining both inequalities, we find that

V (x̂) ≥ V (x∗) > V (x̂)− 1
3 . (1)

9
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Observe that the constraint matrix of (P ) is totally unimodular, as it encodes a b-matching polytope.

Consequently, as long as all the quotas qc are integral, every corner point of the constraint polytope

is integral. Because V (x) is simply a sum of entries xa,c, it must be integral at corner points, and

therefore at all maximizers x of V . In particular, because x̂ maximizes V , V (x̂) is integral. If

x
∗ is a corner point, then V (x∗) is also integral. However, integral solutions satisfying the bounds

in Eq. (1) require V (x̂) = V (x∗).
If x∗ is not a corner point, then we write x

∗ =
∑

i λix
(i) as a convex combination of corner

points x
(i). Because x

∗ maximizes Vδ, each of the x
(i) must also maximize Vδ. By the argument

from the previous paragraph, V (x̂) = V (x(i)) for all i. But then, the convex combination x
∗ must

also have V (x∗) = V (x̂). Thus, each maximizer x∗ of Vδ (whether or not it is a corner point) is

also a maximizer of V , and hence satisfies [PE].

A surprising immediate consequence of this result is that the [PE] and [S] desiderata are essen-

tially enforceable “for free” (i.e., without loss to the total allocation size).

Corollary 4 Given quotas (qc)c∈C , let V ∗ denote the size of the maximum allocation returned by

(P) (i.e., satisfying [ER] and [QR]). Then, for any priority orders (�c)c∈C , there is an integral

allocation with total allocation V ∗ that additionally satisfies [PR] and [S].

In other words, one need not compromise on the efficiency of the solution in order to ensure its

stability and accommodation of priorities.

We note that the above property is implied by Aziz and Brandl (2021) based on the properties

of Algorithm 4. However, Theorem 3 gives a much simpler way to see why this holds. More-

over, it provides a much simpler computational tool for selecting a satisfying allocation: compared

to Algorithm 4, which requires one to solve n separate b-matching problems, our approach requires

solving a single weighted b-matching problem, which can be efficiently solved, for instance using

the Hungarian algorithm (Ramshaw and Tarjan, 2012).

Corollary 5 A satisfactory allocation can be computed in O
(

mnV ∗ + (V ∗)2 log(min(n, q))
)

=
O(mnq + q2 log q) time.

3.1. Attaining all Satisfactory Allocations

By Theorem 3, we know that solving (Pδ) with any valid δ will produce an allocation satisfying all

of our desiderata (i.e., a satisfactory allocation). A follow-up question is whether all (integer) satis-

factory allocations are solutions of (Pδ) for some choice of δ. Here, we answer this question in the

affirmative. To do so, we give an alternate characterization of the integral satisfactory allocations.

Then, for each allocation x in this alternate characterization, we produce an assignment of δ such

that x is a solution to (Pδ).
One immediate point of concern is that since any solution to (Pδ) maximizes V (x), our LP

formulation could miss out on some satisfactory solutions which are non-maximal. Fortunately, this

turns out not to be the case.

Lemma 6 Any allocation x satisfying [PE] maximizes V (x).

Proof We will argue the contrapositive — i.e., any x that does not maximize V (x) is not [PE].

Consider the flow network representation of the allocation problem shown in Fig. 3. We color some

agent nodes red as follows:

10
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Figure 3: A flow network representation of an allocation instance. The source node s has a unit-

capacity edge to each agent node. Each category node has an edge to the sink node t with

capacity equal to that category’s quota. There are unit-capacity edges from each agent

node to the nodes of categories in which it is eligible.

Under the given allocation, for any category c that has an eligible agent who is not fully

allocated in x, color all agents eligible in c red (even if they are fully allocated).

If x is not a maximal allocation, then there is an augmenting path P = (s, a1, c1, . . . , ak, ck, t) in

this flow network. We record the following observations.

1. a1 is red: The in-weight of each agent node is its allocation. Augmenting along P will

increase the in-weight of its first agent node, so this agent node must not have been fully

allocated.

2. ck has not exhausted its quota: The out-weight of each category node is its allocated quota.

Augmenting along P will increase the out-weight of its last category node, so this category

must not have exhausted its quota.

3. Given any red agent a, there is a path of the form s→ a0 → c0 → a in the residual graph for

x, where a0 is a highest-priority agent in c0 that is not fully allocated: this follows from the

definition of red agent nodes.

Let ai be the last red node in P (there must be such a node by Observation 1), and consider the

alternate augmenting path P ′ = (s, a0, c0, ai, ci, . . . , ak, ck, t) using the “shortcut” from Observa-

tion 3. Augmenting along P ′ will strictly increase the allocation to a0 and conserves the allocations

of ai, . . . , ak. Let y be the allocation after this augmentation. By the construction of the flow

network, y still satisfies [ER] and [QR]. Moreover, every agent a �c0 a0 is fully allocated, and

every agent ai, . . . , ak maintains its allocation in y, so y also satisfies [PR]. Thus, y is a Pareto

improvement to x, meaning x did not satisfy [PE].

Let Σ be the collection of all multiset orderings of
{

cqc
}

c∈C
(i.e., the set of all sequences of

length q wherein each category c ∈ C appears qc times). We refer to Σ as the set of choice orders for

11
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our reserve system. For a given choice order σ ∈ Σ, we define the serial dictatorship allocation xσ

to be the (integer) allocation3 obtained by the procedure in Algorithm 1. Note that serial dictatorship

generalizes the sequential reserve matchings of Pathak et al. (2021).

Algorithm 1 Serial Dictatorship Allocation

Input: Choice order σ ∈ Σ

1: for each σi = c in σ in order do

2: if c has remaining quota and an eligible unallocated agent then

3: c allocates to its highest-priority unallocated agent

Lemma 7 For all σ ∈ Σ, the serial dictatorship allocation xσ satisfies [ER], [QR], [PR], and [S].

Proof It is immediate from the definition of serial dictatorship that xσ satisfies [ER], [QR], and

[PR]: each category c only allocates to eligible agents, can allocate to at most qc agents (σ contains

qc copies of c), and always allocates to a highest-priority unallocated agent. It remains to argue that

x is stable. In any subset S of allocated agents, consider the first time that one agent a was allocated

by a category c. By definition, c selected a highest-priority unallocated agent, so a �c s for all

s ∈ S. Thus, S cannot form an unstable cycle.

However, note that xσ may not be Pareto efficient. To see this, consider Example 2 with σ =
(α, β). Here, the allocation xσ is Pareto dominated by xσ′ with σ′ = (β, α). The subset of Pareto

efficient serial dictatorship allocations, however, satisfy all of our desiderata; the following lemma

shows that these are, in fact, all of the satisfactory integer allocations.

Lemma 8 Suppose that x is an integer allocation satisfying [ER], [QR], [PR], [S], and [PE]. Then

x = xσ for some σ ∈ Σ.

Proof We argue the claim by induction on q. The base case q = 1 is trivial: if c is the category

with qc = 1, then any satisfactory integer allocation must give this unit to a highest-priority eligible

agent in c, if one exists.

Suppose that the claim holds for all instances with q = k − 1, and consider an instance with

quota q = k. We first show that in any satisfactory integer allocation x (with V (x) > 0), a highest-

priority agent in some category is allocated from that category. Suppose that this were not the case,

and consider an agent a who is allocated from category c. By assumption, there is some highest-

priority agent a′ who is not allocated from c. If a′ is unallocated, then x would violate [PR]. Hence,

a′ must be allocated in some other category c′. By assumption, a′ does not have highest priority in

c′, meaning that the highest-priority agent a′′ of c′ is not allocated in c′. Continuing this reasoning,

we will (by finiteness) eventually revisit an agent and discover an unstable cycle, contradicting that

x satisfies [S].

Now, let c∗ be a category allocating to its highest-priority agent, and a∗ the highest-priority

agent in c∗. We can realize this allocation by having c∗ be the first category in the ordering ϕ. What

remains is an allocation problem for agents A\{a∗} to categories C, where the quota of c∗ has been

3. For ease of presentation, we ignore ties. This assumption corresponds to each category having a total ordering over

eligible agents; in case there are multiple unallocated agents in the same highest priority tier, we can use any fixed

tie-breaking rule (alternately, any fixed extension of the total preorder �c).

12
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reduced by 1. Let y be the restriction of x to this problem. It is immediate that y is a satisfactory

integer allocation. By our inductive hypothesis, y can be realized as a serial dictatorship allocation

yϕ′ in this sub-problem. Then, x(c∗,ϕ′) realizes x.

Using these lemmas, we can now show that any satisfying (integral) assignment can be realized

as the maximizer of (Pδ) for some valid perturbation δ. This shows that our framework allows us to

select any desired satisfactory allocation.

Theorem 9 Let x be a satisfactory integer allocation. Then, there exists a valid δ such that x is a

solution to (Pδ).

Proof In the following, it is convenient to argue using positive perturbations (i.e., a bonus rather

than a penalty). That is, for every a ∈ A, c ∈ C, we set the coefficient of xa,c in the objective

as 1 + ρa,c, such that ρa,c ∈ [0, ρmax] for all eligible (a, c), and ρa,c ≥ ρa′,c for all a �c a
′. To

convert the ρa,c to valid perturbations δa,c (Definition 2), we can simply re-scale them by 1 + ρmax

to get δa,c =
ρmax−ρa,c
1+ρmax

. Then, it is easy to check that these perturbations satisfy Positivity and

Consistency. Also, by choosing ρmax = 1
3mn

, we ensure that
∑

a,c δa,c < mn · ρmax/(1 + ρmax) <
1/3; thus, the δa,c constitute a valid perturbation.

Let v := V (x). By Lemma 8, x = xσ for some ordering σ = (σ1, . . . , σq) ∈ Σ. We may also,

without loss of generality, assume that the first v entries of σ result in the allocation of an agent:

note that any entry σi corresponding to a depleted category can be moved to the end of the ordering

without affecting the agents available to any later entry.

Now, we set the perturbations as follows:

1. Let a be the top-ranked agent in the category σ1. We set ρa,σ1
= ρmax.

2. In stage i, let r ≤ i be the lowest ranking of an unallocated agent in category σi. Let r′ < r
be the ranking of the agent most recently allocated in σi, with r′ = 0 if no agent has yet been

allocated through σi. For j = r′ + 1, r′ + 2, . . . , r, let aj be the agent with ranking j in σi,
and define Ai = {ar′+1, ar′+2, . . . , ar}. We set ρaj ,σi

= ρmax/(n + 1)i−1 + (r − j) · ε, for

some ε≪ ρmax/(n + 1)n.

The main invariant maintained by the above construction is that at any stage i, the smallest

perturbation ρa,c for c = σi and any a ∈ Ai is greater than the sum of all perturbations of (a, c)
pairs set in rounds i′ > i. As a result, the optimal matching among pairs (a, c) considered in rounds

i and greater must include at least one pair (aj , σi) for some aj ∈ Ai. Moreover, since the agents

ar′+1, ar′+2, . . . , ar−1 were allocated in rounds prior to i, any optimal matching with respect to

the ρa,c must have xar ,σi
= 1. This exactly corresponds to the outcome xσ realized via Serial

Dictatorship with order σ. Thus, the satisfactory integer allocation xσ is realized as a solution to

(Pδ).

4. Perturbed LP Allocations: Insights and Extensions

4.1. Satisfying Additional Desiderata

We first discuss the relation between our perturbed LP solutions and the additional desiderata in Sec-

tion 2.3. Since these properties compare the allocations of different instances, we will need a pro-

cedure for selecting δ that does not depend on specific features of the instance.

13
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Definition 10 (Ranking-Based Allocation Rule) A ranking-based allocation ruleψf is parametrized

by a function f : [n] → R. It computes δa,c = f(rc(a)) for all a, c (i.e., the perturbation δa,c de-

pends only on the ranking of agent a in c, but not on the identity of a or c or any quotas), and then

returns an optimal solution to (Pδ).

Lemma 11 Let f : [n] → R be a fixed, monotone decreasing function. Then, the ranking-based

allocation rule ψf satisfies [M], [SP], and [ST].

Proof To prove [M], consider two instances I, I ′ with the same A, C, {�c}, and with q′c ≥ qc for

each c. Let x ∈ ψf (I); that is, x is an optimal feasible solution to the LP (Pδ) with quotas qc, where

δ is computed from the rankings using f . Enlarging the quotas from qc to q′c cannot hurt feasibility,

and all perturbation weights are the same for both instances I, I ′. If x remains maximal for I ′,
then x ∈ ψf (I

′). Otherwise, we can repeatedly Pareto improve x by applying the augmentation

procedure from the proof of Lemma 6, until the resulting y is maximal, i.e., an optimal feasible

solution for (Pδ) with augmented quotas q′c. This means that y ∈ ψf (I
′), so we have identified a

y ∈ ψf (I
′) which Pareto dominates x.

For [SP], the way in which the δa,c are computed ensures that for any categories c, c′ with

identical priority orders and any eligible agent a �c θc, δa,c = δa,c′ . Therefore, such categories will

be treated equivalently in the objective, so they can be merged without affecting the total allocation

through these categories.

For [ST], note that by decreasing their priority (i.e., increase their ranking) in category c, agent

a will increase the value of δa,c= f(rc(a)) (since f is monotone decreasing). This makes it more

disadvantageous for c to allocate to a.

4.2. Allocation with Transferable Quotas

We next consider a modified setting in which we loosen [QR], and consider alternate desiderata

which allow unused quotas to be transferred across categories. In some domains, such as healthcare,

the efficiency of an allocation is more important than the strict adherence to quotas; for example,

excess medical supplies should not be withheld from patients who do not have certain demographic

factors. In these settings, there can be a cost (economic, logistical, moral, etc.) to adjusting the

quotas from their pre-determined values. Therefore, a natural goal is to fully allocate the resource

in a way that requires minimal deviation from the quotas. Here, a full allocation is one with value

v∗ := min
{

q, |{a ∈ A : a ≻c θc for some c}|
}

,

meaning that it either allocates all q resource units, or allocates to every candidate who is eligible in

at least one category.

We can measure the transfer efficiency of an allocation as the minimum amount of quota that

must be transferred between categories to reach a full allocation. Formally, we define the function,

T (y) :=
∑

c∈C

(

(

∑

a∈A

ya,c
)

− qc

)+

to represent the minimum transfer amount. Then, the following desideratum captures our notion of

transfer efficiency.

14
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[TE] Transfer Efficient: Among all full allocations, x minimizes the total amount of transferred

quota: x ∈ argmin
y

{

T (y)
}

.

The following lemma describes the close relationship between our two notions of efficiency.

Lemma 12 Suppose that x is an allocation satisfying [TE] and x̂ is an allocation satisfying [PE].

Then, T (x) = v∗ − V (x̂).

Proof First, we argue that T (x) ≤ v∗ − V (x̂). By total unimodularity, we may assume that x̂ is

integral. Consider the procedure given in Algorithm 2 to transfer some quotas in x̂.

Algorithm 2 Transfer Quota

1: while there is an unallocated agent eligible in a category c and a category c′ with unused quota

do

2: let a be the highest-priority unallocated agent in c.
3: transfer one unit of quota from c′ to c and allocate a through c.

When this procedure terminates with an allocation ŷ, either every agent eligible in a category

has been allocated, or all quotas have been filled. Thus, V (ŷ) = v∗. The Pareto efficiency of

x̂ ensures that every category with an unallocated agent has met its quota. Therefore, every unit

transferred to a category c will be in excess of its quota. Additionally, no category that receives

additional quota will donate it later in the procedure: all received quota is immediately allocated.

Thus, the total amount of transferred quota is exactly equal to the increase in allocation amount

V (ŷ)− V (x̂) = v∗ − V (x̂) =
∑

c∈C

(

(

∑

a∈A

ya,c
)

− qc

)+
.

Note that ŷ was one allocation in the minimization defining x, so T (x) ≤ v∗ − V (x̂).
Next, we argue that T (x) ≥ v∗ − V (x̂). Consider the flow network from Fig. 3. By increasing

the capacity of one (c, t) edge in this network by ∆, the value of the maximum flow (i.e. the total

allocation) increases by at most ∆. Similarly, by decreasing the capacity on a (c, t) edge, we do not

increase the value of the maximum flow. Thus, the transfer of ∆ units of quota results in an increase

of at most ∆ in the total allocation. By definition, the maximum total allocation subject to the quota

constraints is V (x̂), so we must transfer at least v∗ − V (x̂) units of quota to realize an allocation of

value v∗. Hence, T (x) ≥ v∗ − V (x̂).

Thus, we can use our perturbed LP (Pδ) from Section 3 to find a Pareto efficient solution x̂,

and then use the procedure in the proof to modify x̂ to a transfer efficient allocation ŷ. In fact, ŷ

additionally satisfies [ER], [PR], and [S]. The first is immediate from the definition, and the latter

two follow by arguments analogous to Theorem 3.

4.3. Unanimous Agents

We define unanimous agents to be those who are allocated by every integer allocation satisfying

[ER], [QR], [PR], [PE], and [S]. The unanimous agents are crucial to any allocation procedure

targeting these desiderata, as such a procedure must decide through which categories each of these
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agents is allocated. There is an equivalent characterization of unanimous agents that allows them to

be identified in polynomial time.

For a given agent a and a category c for which a is eligible, we define the a-restriction of c to

be the total preorder ≻c\a obtained from ≻c by moving a from ranking rc(a) to ranking rc(a) + 1,

and placing θc immediately above a (thereby making a, and all agents a′ with lower priority than a
in c, ineligible for c).

Lemma 13 Let V ∗ be the value of (P ) on the original instance. For a given agent a, let V ∗
\a be the

value of (P ) on the instance where ≻c has been replaced with the restriction ≻c\a in each category

c for which a is eligible. Then, a is unanimous if and only if V ∗ > V ∗
\a.

Proof We argue the forward direction by its contrapositive. Suppose that V ∗ = V ∗
\a. Then, we

have found an integer allocation with value V ∗ satisfying [ER], [QR], and [PE] on the a-restricted

instance. By Corollary 4, there must also be an integer allocation with value V ∗ that additionally

satisfies [PR] and [S]. Note that a is not present on any of the a-restricted lists, so is not allocated.

However, this allocation is also feasible for the original priority lists. Since we have located a

satisfactory integer allocation that does not include a, a is not unanimous.

We also argue the reverse direction by its contrapositive. Suppose that a is not unanimous. Then,

there is a satisfactory integer allocation in which a is not allocated. By definition, this allocation

has value V ∗. By Axiom 3, no category could allocate to an agent with lower priority than a. Thus,

this allocation is also feasible for the a-restricted instance, so V ∗ = V ∗
\a.

As two immediate corollaries to this lemma, we can derive two sufficient conditions for an agent to

be unanimous.

Corollary 14 Let V ∗ be the value of (P ). Then, agent a is unanimous if the union of all eligible

agents in the a-restricted instance has cardinality less than V ∗.

Corollary 15 Let ℓc be the number of eligible agents in category c. Then, an agent a is unanimous

if they are in the top min{ℓc, qc} agents in c.

5. Selecting Equitable Allocations via Ranking-Based Perturbations

Thus far, we have addressed existence, efficiency and computation of satisfactory allocations. In

particular, Theorem 3 tells us that any choice of valid δ induces a satisfactory allocation, and Theo-

rem 9 shows that every satisfactory allocation is induced by some δ.
In this section, we take a more principled approach to the question of allocation selection. We

discuss how our perturbed LP approach gives us the freedom to set δ to select particular allocations

satisfying additional notions of equity. We restrict our attention to ranking-based allocation rules,

so that their allocations additionally satisfy [M], [SP], and [ST] by Lemma 11.

5.1. Minimizing the Average Ranking

The ranking of an agent a in category c provides a proxy for how important it is to c that a be allo-

cated. Thus, a natural notion of the quality of an allocation is the average rank of the allocated items

in their category — if this average rank is small, it means that categories predominantly allocate

their units to their top choices. This notion of average ranking has been previously considered in

the context of Stable Marriage (Pittel, 1989).
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Lemma 16 Consider the ranking-based allocation rule ψf with f(k) = k
4mn2 . The allocations

induced by ψf are satisfactory and minimize the average ranking of the allocated agents among all

satisfactory allocations.

In other words, to minimize the average rank, we can choose perturbation penalties that grow arith-

metically in the agent ranking.

Proof Fix rankings, and define δA as δAa,c = f(rc(a)) = rc(a)
4mn2 . For the first claim, it suffices to

argue that δA is valid by Theorem 3. By construction, each δAa,c is positive. Since each rc(a) ≤ n,

∑

a∈A

∑

c∈C

δAa,c ≤
∑

a∈A

∑

c∈C

1
4mn

= 1
4 <

1
3 ,

so δA has small effect. δA is also consistent, because rc(a) ≤ rc(a
′) if and only if a �c a

′.

For the second claim, we consider the objective value of (PδA). We have

VδA(x) = V (x)−
∑

a∈A

∑

c∈C

δAa,c · xa,c = V (x)− 1
4mn
·
(

1
n

∑

a∈A

∑

c∈C

rc(a) · xa,c

)

.

V (x) is be the same for all satisfactory (and thus all Pareto efficient) allocations. The parenthesized

expression is exactly the average ranking of all allocated agents. Thus, solutions to (PδA) minimize

this average ranking among all satisfactory allocations.

5.2. Minimizing the Maximum Ranking

While the average rank is a natural utilitarian notion of allocation quality, another natural alternative

that is more equitable is to try and minimize the maximum allocated ranking across categories. The

maximum ensures a stricter notion of “fairness,” in that it discourages even one category using its

quota to allocate to an agent lower in its ranking. Notice that for the maximum ranking, it is more

meaningful to focus solely on integer allocations, to avoid a discontinuity as an allocation goes to

0. In addition, minimizing the maximum ranking makes most sense as a notion of equity in settings

where all of the quotas are roughly equal.

Lemma 17 Consider the ranking-based allocation rule ψf with f(k) = 1
4mn
·
(

1
n+1

)n−k

. The in-

teger allocations induced by ψf are satisfactory and minimize the maximum ranking of the allocated

agents among all satisfactory integer allocations.

In other words, to minimize the maximum rank, we can choose perturbation penalties that grow

geometrically in the agent ranking.

Proof Fix rankings, and define δG as δGa,c = f(rc(a)) =
1

4mn
·
(

1
n+1

)n−rc(a)
. For the first claim,

it suffices to argue that δG is valid by Theorem 3. By construction, each δGa,c is positive. Since each

rc(a) ≤ n, we have that
(

1
n+1

)n−rc(a) ≤ 1. Thus,

∑

a∈A

∑

c∈C

δGa,c ≤
∑

a∈A

∑

c∈C

1
4mn

= 1
4 <

1
3 ,
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so δG has small effect. δG is also consistent, because rc(a) ≤ rc(a
′) if and only if a �c a

′, and δGa,c
is an increasing function in rc(a). For the second claim, we consider the objective value of (PδG):

VδG(x) = V (x)−
∑

a∈A

∑

c∈C

δGa,c · xa,c.

Restricting our attention to integer allocations x, the sum can be rewritten as

1

4mn · (n + 1)n
·

∑

(a,c):xa,c=1

(n + 1)rc(a). (2)

Let R(x) := max
(a,c):xa,c=1

{

rc(a)
}

. By definition, for a fixed R(x), the value of the sum in Eq. (2)

falls in the interval
[

(n + 1)R(x), n · (n + 1)R(x)
]

. Since these intervals are non-overlapping, the

integral allocation maximizing VδG , so minimizing this sum, must also minimize R(x).

6. Conclusions

The problem of reserve allocations is central in many real-world settings, as many allocation criteria

can be expressed through priorities and quotas. In this work, we built on a model of Pathak et al.

(2021) that modelled reserve allocation as a bipartite matching problem with additional hard priority

constraints. We then showed that a valid allocation – those which obey priorities and quotas, and

also are Pareto efficient – can be located using a simple b-matching LP. In more detail, we perturb

edge weights in a way that enforces the priorities, but also leverages the integrality of the corner

points of the b-matching polytope to only select valid allocations. Moreover, by introducing a

stability criterion from the perspective of the categories, we were able to give a complete algorithmic

characterization of all valid allocations.

The clean formulation of our algorithm has many benefits. First, it amounts to the computation

of a single weighted b-matching, making it more efficient than previous algorithms in this space.

Beyond this, we were able to utilize the LP structure to establish many additional properties of our

allocations. Finally, the under-specification of our algorithm’s parameters provided an opportunity

to secondarily enforce notions of fairness. Determining other secondary objectives to which this

framework is amenable is an interesting direction for future work. For example, the ability to

incorporate notions of utility — both on the part of the categories and the agents — could relax

our assumption on indifference of allocation and provide a more realistic setting for settings with

economic incentives.

While our flexible approach can locate a large collection of potential allocations, in some set-

tings, it may be desirable to specify a natural rule (equivalently, add additional desiderata) that,

given any priorities and quotas, identifies a unique “best” allocation. While the work of Delacrétaz

(2021) makes an effort in this direction, the additional axiom proposed there is arguably not fully

natural, but more importantly, can result in unexpected or inefficient allocations. An ambitious goal

would be to locate an allocation that (1) is the unique allocation meeting a set of criteria, (2) can be

realized as the maximizer of some objective function over allocations, and (3) can be located by an

efficient algorithm. We hope the techniques introduced here can help in building towards this goal.
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FAIR AND EFFICIENT ALLOCATION WITH QUOTAS

Appendix A. Existing Allocation Rules (and their Shortcomings)

Here, we summarize some allocation techniques from the prior literature.

In Section 3 of their work, Pathak et al. (2021) consider a special case of our model where all

agents are eligible for all categories and where the priority order of each category is total. They

define the collection of sequential reserve matchings {ϕ⊲} as those computed by Algorithm 3 for

each total ordering ⊲ over the categories.

Algorithm 3 Sequential Reserve Allocation

1: for each category c in order of ⊲ do

2: while c has remaining quota and an (eligible) unallocated agent a do

3: allocate one unit to a through c

It is immediate from this description that every sequential reserve matching ϕ⊲ satisfies [ER],

[PR], and [QR]. In addition, sequential reserve matchings, and indeed, any form of serial dictator-

ship, also satisfy [S]. However, while [PE] is trivially satisfied in their restricted setting, it is not

guaranteed when some agents are ineligible for some categories, as illustrated by Example 2.

Example 2 ([PE] violations by Algorithm 3) Consider the following instance.

α (1) β (1)

a a

b

If α⊲β, then the sequential allocation ϕ⊲ has α allocate to a and leaves b unallocated. This is

Pareto dominated by the allocation to b through α and to a through β.

In follow-up work, Delacrétaz notes another inherent unfairness of sequential allocation; cate-

gories that are processed later will have more opportunity to allocate to agents lower in their priority

lists (Delacrétaz, 2021). To address this, he introduces a category neutrality desideratum wherein

an agent only receives a greater allocation from eligible category c than c′ if c′ has allocated its full

quota to higher-priority agents. Delacrétaz describes a ‘water-filling’ procedure called Simultaneous

Allocation that produces a category neutral allocation.

We refer readers to (Delacrétaz, 2021) for the formal definition of the Simultaneous Allocation

rule. The most notable feature of the rule is that each agent a receives an equal allocation4 from

every category that a qualifies for. Unfortunately, as Delacrétaz notes, this procedure cannot ensure

Pareto efficiency under partial eligibility lists; for example, in the instance in Example 2, under

Simultaneous Allocation, a is allocated 1
2 unit each from categories α and β, for a total allocation

of 1, while b is allocated the remaining 1
2 unit. This fractional allocation is again Pareto dominated

by the integer allocation giving a one unit through category β and b one unit through category α.

In addition, the simultaneous allocation procedure also fails to be stable, even in the case of total

priority orders.

4. subject to quota and priority constraints.
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Example 3 (Simultaneous allocation is not stable) Consider the following instance.

α (1) β (1) γ (1)

a b c

b c a

c a b

The simultaneous allocation procedure gives each agent 1
3 of a unit through each category. This

allocation has an unstable cycle (c, α) → (a, β) → (b, γ) → (c, α). On the other hand, the

allocation where each category gives a full unit to its highest-priority agent is the unique stable and

Pareto-efficient allocation.

Moreover, the equal allocation property also leads to violation of Sybil-proofness, and indeed,

merging/splitting categories can result in Pareto improvements

Example 4 (Merging categories can increase allocation) Consider the following instance:

α (1) β (1) γ (1)

a , b a , b a , b

c c

The simultaneous allocation procedure will require β and γ to each allocate 1
3 of a unit to each

of a and b, leaving a total of 2
3 to allocate to c (and giving their eligible agents a total allocation

of 8
3 ). However, if β and γ merge, simultaneous allocation will require the merged category to

contribute half a unit to each of a and b, allowing them to contribute a full unit to c (and giving

their eligible agents a total allocation of 3).

Lastly, we consider the reverse rejecting rule of Aziz and Brandl (2021), which iteratively re-

moves agents from consideration as long as there remains a maximal allocation.

Algorithm 4 Reverse Rejecting Allocation

1: R← ∅, M∗ ← maximal allocation (without [PR] considerations)

2: for each agent a in an (arbitrary) order ≻π do

3: M ←maximal allocation in instance where R∪{a} and all lower priority agents are deleted

from each category

4: if |M | = |M∗| then

5: R← R ∪ {a}, M∗ ←M
6: return M∗

This algorithm turns out to satisfy most of our primary desiderata ([ER], [QR], [PR], and in-

directly [PE]); however, it does not ensure stability. In particular, the algorithm underspecifies

the selection of the matching M , so it permits the selection of an unstable matching, for example

{(c, α), (a, β), (b, γ)} in Example 3 (and since the choice of the final matching M∗ is agnostic of

all priority information, it is unclear if this can fixed).
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