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Abstract

Team formation is ubiquitous in many sectors: education, labor markets, sports,
etc. A team’s success depends on its members’ latent types, which are not directly
observable but can be (partially) inferred from past performances. From the viewpoint of
a principal trying to select teams, this leads to a natural exploration-exploitation trade-
off: retain successful teams that are discovered early, or reassign agents to learn more
about their types? We study a natural model for online team formation, where a principal
repeatedly partitions a group of agents into teams. Agents have binary latent types, each
team comprises two members, and a team’s performance is a symmetric function of its
members’ types. Over multiple rounds, the principal selects matchings over agents and
incurs regret equal to the deficit in the number of successful teams versus the optimal
matching for the given function. Our work provides a complete characterization of the
regret landscape for all symmetric functions of two binary inputs. In particular, we
develop team-selection policies that, despite being agnostic of model parameters, achieve
optimal or near-optimal regret against an adaptive adversary.

1 Introduction

An instructor teaching a large online course wants to pair up students for assignments. The
instructor knows that a team performs well as long as at least one of its members has some
past experience with coding, but unfortunately, there is no available information on the
students’ prior experience. However, the course staff can observe the performance of each
team on assignments, and so, over multiple assignments, would like to reshuffle teams to try
and quickly maximize the overall number of successful teams. How well can one do in such
a situation?

Team formation is ubiquitous across many domains: homework groups in large courses,
workers assigned to projects on online labor platforms, police officers paired up for patrols,
athletes assigned to teams, etc. Such teams must often be formed without prior information
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on each individual’s latent skills or personality traits, albeit with knowledge of how these
latent traits affect team performance. The lack of information necessitates a natural trade-
off: a principal must decide whether to exploit successful teams located early or reassign
teammates to gain insight into the abilities of other individuals. The latter choice may
temporarily reduce the overall rate of success.

To study this problem, we consider a setting (described in detail in Section 2) where agents
have binary latent types, each team comprises two members, and the performance of each
team is given by the same synergy function, i.e., some given symmetric function of its mem-
bers’ types. Over multiple rounds, the principal selects matchings over agents, with the goal
of minimizing the cumulative regret, i.e., the difference between the number of successful
teams in a round versus the number of successful teams under an optimal matching. Our
main results concern the special case of symmetric Boolean synergy functions — in particular,
we study the functions EQ and XOR (in Section 3), OR (in Section 4) and AND (in Section 5).
While this may at first appear to be a limited class of synergy functions, in Section 2.3, we
argue that these four functions are in a sense the atomic primitives for this problem; our
results for these four settings are sufficient to handle arbitrary symmetric synergy functions.

The above model was first introduced by Johari et al. [12], who considered the case where
agent types are i.i.d. Bernoulli(p) (for known p) and provide asymptotically optimal regret
guarantees under AND (and preliminary results for OR). As with any bandit setting, it is
natural to ask whether one can go beyond a stochastic model to admit adversarial inputs.
In particular, the strongest adversary one can consider here is an adaptive adversary, which
observes the choice of teams in each round, and only then fixes the latent types of agents.
In most bandit settings, such an adversary is too strong to get any meaningful guarantees;
among other things, adaptivity precludes the use of randomization as an algorithmic tool,
and typically results in every policy being as bad as any other. Nevertheless, in this work,
we provide a near-complete characterization of the regret landscape for team formation under
an adaptive adversary. In particular, in a setting with n agents of which k have type ‘1’, we
present algorithms that are agnostic of the parameter k, and yet when faced with an adaptive
adversary, achieve optimal regret for EQ and XOR, and near-optimal regret bounds under OR
and AND (and therefore, using our reduction in Section 2.3, achieve near-optimal regret for
any symmetric function).

While our results are specific to particulars of the model, they exhibit several noteworthy
features. First, despite the adversary being fully adaptive, our regret bounds differ only by a
small constant factor from prior results for AND under i.i.d. Bernoulli types [12]; such a small
gap between stochastic and adversarial bandit models is uncommon and surprising. Next,
our bounds under different synergy functions highlight the critical role of these functions
in determining the regret landscape. Additionally, our algorithms expose a sharp contrast
between learning and regret minimization in our setting: while the rate of learning increases
with more exploration, minimizing regret benefits from maximal exploitation. Finally, to deal
with adaptive adversaries in our model, we use techniques from extremal graph theory that
are atypical in regret minimization; we hope that these ideas prove useful in other complex
bandit settings.
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1.1 Related Work

Regret minimization in team formation, although reminiscent of combinatorial bandits/semi-
bandits [4, 5, 6, 8, 16], poses fundamentally new challenges arising from different synergy
functions. In particular, a crucial aspect of bandit models is that rewards and/or feedback
are linear functions of individual arms’ latent types. Some models allow rewards/feedback to
be given by a non-linear link function of the sum of arm rewards [7, 10], but typically require
the link function to be well-approximated by a linear function [17]. In contrast, our team
synergy functions are non-linear, and moreover, are not well-approximated by any non-linear
function of the sums of the agents’ types.

One way to go beyond semi-bandit models and incorporate pairwise interactions is by assum-
ing that the resulting reward matrix is low-rank [13, 20, 24]. The critical property here is that
under perfect feedback, one can learn all agent types via a few ‘orthogonal’ explorations; this
is true in our setting under the XOR function (Section 3), but not for other Boolean functions.
Another approach for handling complex rewards/feedback is via a Bayesian heuristic such as
Thompson sampling or information-directed sampling [9, 14, 19, 23]. While such approaches
achieve near-optimal regret in many settings, the challenge in our setting is in updating priors
over agents’ types given team scores. We hope that the new approaches we introduce could,
in the future, be combined with low-rank decomposition and sampling approaches to handle
more complex scenarios such as shifting types and corrupted feedback.

In addition to the bandit literature, there is a parallel stream on learning for team formation.
Rajkumar et al. [18] consider the problem of learning to partition workers into teams, where
team compatibility depends on individual types. Kleinberg and Raghu [15] consider the use of
individual scores to estimate team scores and use these to approximately determine the best
team from a pool of agents. Singla et al. [21] present algorithms for learning individual types
to form a single team under an online budgeted learning setting. These works concentrate
on pure learning. In contrast, our focus is on minimizing regret. Finally, there is a line of
work on strategic behavior in teams, studying how to incentivize workers to exert effort [2, 3],
and how to use signaling to influence team formation [11]. While our work eschews strategic
considerations, it suggests extensions that combine learning by the principal with strategic
actions by agents.

2 Model

2.1 Agents, Types, and Teams

We consider n agents who must be paired by a principal into teams of two over a number
of rounds; throughout, we assume that n is even. Each agent has an unknown latent type
θi ∈ {0, 1}. These types can represent any dichotomous attribute: “left-brain” vs. “right-
brain” (Section 3), “low-skill” vs. “high-skill” (Sections 4 and 5), etc. We let k denote the
number of agents with type 1, and assume that k is fixed a priori but unknown.

In each round t, the principal selects a matching Mt, with each edge (i, j) ∈Mt representing a
team. We use the terms “edge” and “team” interchangeably. The success of a team (i, j) ∈Mt

is f(θi, θj), where f : {0, 1}2 → R is some known symmetric function of the agents’ types. In
Sections 3-5, we restrict our focus to Boolean functions, interpreting f(θi, θj) = 1 as a success
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and f(θi, θj) = 0 as a failure. The algorithm observes the success of each team, and may use
this to select the matchings in subsequent rounds; however, the algorithm cannot directly
observe agents’ types. For any matching M , we define its score as S(M) :=

∑
(i,j)∈M f(θi, θj)

— in the special case of Boolean functions, this is the number of successful teams.

A convenient way to view the Boolean setting is as constructing an edge-labeled exploration
graph G(V,E1, E2, . . .), where nodes in V are agents, and the edge set Et :=

⋃
t′≤tMt′

represents all pairings played up to round t. Upon being played for the first time, an edge is
assigned a label {0, 1} corresponding to the success value of its team. Known 0-agents and
known 1-agents are those whose types can be inferred from the edge labels. The remaining
agents are unknown. The unresolved subgraph is the induced subgraph on the unknown
agents.

2.2 Adversarial Types and Regret

The principal makes decisions facing an adaptive adversary, who knows k (unlike the principal,
who only knows n) and, in each round, is free to assign agent types after seeing the matching
chosen by the principal, as long as (1) the assignment is consistent with prior observations
(i.e., with the exploration graph), and (2) the number of 1-agents is k. Note that this is
the strongest notion of an adversary we can consider in this setting; in particular, since the
adversary is fully adaptive and knows the matching before making decisions, randomizing does
not help, and so it is without loss of generality to consider only deterministic algorithms.

We evaluate the performance of algorithms in terms of additive regret against such an ad-
versary. Formally, let M∗ be any matching maximizing S(M∗) — note that for any Boolean
team success function, S(M∗) is a fixed function of n and k. In round t, an algorithm incurs
regret rt := S(M∗) − S(Mt), and its total regret is the sum of its per-round regret over an
a priori infinite time horizon. Note, however, that after a finite number of rounds, a näıve
algorithm that enumerates all matchings can determine, and henceforth play, M∗; thus, the
optimal regret is always finite. Moreover, the “effective” horizon (i.e., the time until the
algorithm learns M∗) of our algorithms is small.

2.3 Symmetry Synergy Functions and Atomic Primitives

In subsequent sections, we consider the problem of minimizing regret under four Boolean
synergy functions f : {0, 1}2 → {0, 1}: EQ, XOR, OR, and AND. Interestingly, the algorithms
for these four settings suffice to handle any symmetric synergy function f : {0, 1}2 → R. We
argue this below for synergy functions that take at most two values; We handle the case of
synergy functions f taking three different values at the end of Section 3.1.

Lemma 1. Fix some ` ≤ u, let f : {0, 1}2 → {`, u} be any symmetric synergy function, and
let rf (n, k) denote the optimal regret with n agents, of which k have type 1.

Then, rf (n, k) = (u− `) · rg(n, k) for one of g ∈ {EQ,XOR,AND,OR}.

Proof First, note that without loss of generality, we may assume that f(0, 0) ≤ f(1, 1).
Otherwise, we can swap the labels of the agent types without altering the problem. Note
that this immediately allows us to reduce team formation under the Boolean NAND and
NOR function to the same problem under AND and OR, respectively. Next, note that if
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f(0, 0) = f(1, 0) = f(1, 1), then the problem is trivial, as all matchings have the same score.
Otherwise, we may apply the affine transformation f 7→ 1

u−` ·f−
`

u−` to the output to recover
a Boolean function:

• When f(0, 1) < f(0, 0) = f(1, 1), we recover the EQ function.

• When f(0, 0) = f(1, 1) < f(0, 1), we recover the XOR function.

• When f(0, 0) = f(0, 1) < f(1, 1), we recover the AND function.

• When f(0, 0) < f(0, 1) = f(1, 1), we recover the OR function.

The structure of the problem remains unchanged since total regret is linear in the number
of each type of team played over the course of the algorithm. The regret simply scales by a
factor of u− `.

3 Uniform and Diverse Teams

We first focus on forming teams that promote uniformity (captured by the Boolean EQ
function) or diversity (captured by the XOR function). In addition, we also show that the
algorithm for EQ minimizes regret under any general symmetric synergy function taking three
different values.

3.1 Uniformity (EQ)

We first consider the equality (or EQ) synergy function, fEQ(θi, θj) = θi ⊕ θj . Here, an
optimal matching M∗ includes as few (0, 1)-teams as possible, and thus S(M∗) = n

2 − (k
mod 2). If k (and thus n − k) is even, then all agents can be paired in successful teams;
else, any optimal matching must include one unsuccessful team with different types. For this
setting, Theorem 1 shows that a simple policy (Algorithm 1) achieves optimal regret for all
parameters n and k.

Algorithm 1 Form Uniform Teams

Round 1: Play an arbitrary matching.
Round 2: Swap unsuccessful teams in pairs as {(a, b), (c, d)} → {(a, c), (b, d)}. Repeat
remaining teams (including one unsuccessful team when k is odd).
Round 3: If {(a, b), (c, d)}, {(a, c), (b, d)} are both unsuccessful, play {(a, d), (b, c)}. Re-
peat remaining teams.

Theorem 1. Define rEQ(n, k) := 2 ·
(

min(k, n− k)− (k mod 2)
)
. Then,

1. Algorithm 1 learns an optimal matching by round 3, and incurs regret at most rEQ(n, k).
2. Any algorithm incurs regret at least rEQ(n, k) in the worst case.

Proof For the upper bound on the regret, note that every unsuccessful team includes a 0-
agent and a 1-agent. Thus, there is a re-pairing of any two unsuccessful teams that gives rise
to two successful teams. If the re-pairing in round 2 is unsuccessful, the only other re-pairing,
selected in round 3, must be successful. There will be k mod 2 unsuccessful teams in round
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3, making it an optimal matching. At most min(k, n− k) (0, 1)-teams can be chosen in each
of rounds 1–2, implying that the maximum regret in each of these rounds is min(k, n−k)− (k
mod 2). Since Algorithm 1 incurs regret only in rounds 1–2, its total regret is at most
rEQ(n, k).

For the converse (Claim 2), we argue that against any algorithm, the adversary can always
induce regret min(k, n− k)− (k mod 2) in each of rounds 1–2. Note that after round 2, the
exploration graph is a union of two (not necessarily disjoint) matchings, and hence consists
of a disjoint union of even-length cycles and isolated (duplicated) edges; this is independent
of the algorithm, as it holds for any pair of perfect matchings. Since the graph is bipartite,
the adversary can assign types such that no pair of the minority type is adjacent in the graph
by starting with the labeling according to the bipartition, then arbitrarily relabeling a subset
of the minority side to make the labeling consistent with k.

A similar argument allows us to complete our treatment of general (symmetric) synergy
functions from Section 2.3.

Corollary 1. For any symmetric synergy function f : {0, 1}2 → R such that f(0, 0) 6=
f(0, 1) 6= f(1, 1), there is a regret-minimizing algorithm that locates an optimal matching
within two rounds.

Proof By applying an affine transformation to the outputs as in Section 2.3, we may assume
without loss of generality that f(0, 0) = 0, and f(1, 1) = 1. There are three cases to consider:

• f(0, 1) = 1
2 : The problem is trivial, since all matchings have the same score.

• f(0, 1) > 1
2 : The optimal matching includes as many 1-0 agent teams as possible. After

the first (arbitrary) matching, every agent is either part of a known 1-0 team or has
a known identity (as a member of a 0-0 or 1-1 team). Thus, one can always select an
optimal matching in the second round.

• f(0, 1) < 1
2 : The optimal matching includes as many 1-1 agent teams as possible, just

as in the EQ setting. Note that the three distinct values of f allow us to distinguish
between (0, 0), (0, 1), and (1, 1) teams. The same adversarial policy ensures that all 0-1
teams remain sub-optimally paired in round 2, so we exactly recover the EQ setting.

3.2 Diversity (XOR)

Next we consider the XOR success function, fXOR(θi, θj) = θi ⊕ θj , which promotes diverse
teams. Now S(M∗) = min(k, n−k), since any optimal matching M∗ includes as many (0, 1)-
teams as possible. Define x+ := max(0, x); we again show that a simple policy (Algorithm 2)
has optimal regret for all n, k.

Theorem 2. Define rXOR(n, k) := 2 ·
(

min(k, n− k)− 1− (k mod 2)
)+
. Then,

1. Algorithm 2 learns an optimal matching after round 2, and incurs regret at most
rXOR(n, k).

2. Any algorithm incurs regret at least rXOR(n, k) in the worst case.
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Algorithm 2 Form Diverse Teams

Round 1: Play an arbitrary matching; let {(1, 2), . . . , (`−1, `)} denote unsuccessful teams.

Round 2: Replay all successful teams, and construct a single cycle over all unsuccessful
teams (i.e., play teams {(`, 1), (2, 3), . . . , (`− 2, `− 1)}).
Round 3: Play any inferred optimal matching (see Theorem 2).

Proof For the achievability in Claim 1, note that each edge
(
i, (i + 1) mod `

)
of the cycle

constructed in the algorithm has the following property: if the edge is successful in round
2, then its endpoints have opposite types; otherwise, they have the same type. By following
edges around the cycle, the algorithm can therefore construct the sets S= of agents with the
same type as agent 1, and S 6= of agents with the opposite type. Subsequently, it is optimal
to match min(|S=|, |S 6=|) teams of (known) opposite-type agents, and match the extraneous
agents into unsuccessful teams.

Among agents 1, . . . , `, there are k− n−`
2 1-agents and n−k− n−`

2 0-agents; thus, the round 1

regret is r1 := min(k, n− k)− n−`
2 (note that When k is odd, one team must be successful in

round 1). Since no regret is incurred after round 2, the adversary must maximize the regret
in round 2 conditioned on the choice of `. This is achieved by assigning type 1 to agents
1, . . . , k− n−`

2 , and type 0 to agents k− n−`
2 + 1, . . . , `. Since (`, 1) and (k− n−`

2 , k− n−`
2 + 1)

are the only successful teams (as long as agents 1 to ` do not all have the same type), the

regret in round 2 is (r1 − 2)+. The total regret
(
2 min(k, n − k) − n + ` − 2

)+
is monotone

increasing in `, with the maximum attained at ` = n− 2(k mod 2). Substituting, we get the
upper bound.

For the converse (Claim 2), we describe a policy for the adversary that ensures regret at least
rXOR(n, k). In round 1, the adversary reveals k mod 2 successful teams, resulting in regret
min(k, n−k)− (k mod 2). In round 2, the exploration graph must consist of a disjoint union
of even-length cycles (including isolated duplicated edges).

First, when k is odd, consider the component containing the one revealed successful team
from round 1. If the component has just two agents (i.e., the algorithm repeats the team),
then we again get one successful team. Otherwise, if the team is part of a longer cycle, the
adversary puts an odd number of adjacent 0s and an odd number of adjacent 1s in the cycle,
such that the previously successful team is (0,1). Since the edge is not repeated, and only
one other (0,1)-team is created, the algorithm gets at most one successful team in this cycle.
The remaining cycles contain an even number of 1-agents, so we appeal to below.

When k is even, the adversary fills cycles with 0-agents until they are exhausted, then labels
all remaining agents as 1-agents. At most one cycle contains both agent types. Placing the
0-agents contiguously in this cycle ensures only two adjacent successful teams. Since all cycle
lengths are even, as is n − k, these successful teams will be an even number of edges apart;
in particular, the adversary can ensure that they are both edges from round 2, making the
assignment consistent with round 1. In total, the algorithm obtains at most 2 + (k mod 2)
successful teams in round 2, giving total regret at least rXOR(n, k).
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4 The Strongest Link Setting (OR)

We next consider the Boolean OR synergy function, that is, fOR(θi, θj) = θi + θj . Adopting
the terminology of Johari et al. [12], we refer to this setting as the strongest link model:
interpreting 0/1-agents as having low/high skill, a team is successful when it has at least one
high-skill member.

Observe that under OR, we have S(M∗) = min(k, n/2), since any optimal matching M∗

includes a maximal set of (0, 1)-teams. Define α := n−k
n to be the fraction of low-skill agents;

our regret bounds in this setting are more conveniently phrased in terms of α. In particular,
our first result establishes the following lower bounds on the regret incurred by any algorithm.

Theorem 3. For the strongest link setting, any algorithm incurs regret at least LOR(α) · n
in the worst-case, where

LOR(α) =


13α
17 0 ≤ α ≤ 1

2
6−9α

4
1
2 < α ≤ 6

11
3−4α

3
6
11 < α ≤ 3

5
1−α

2
3
5 < α ≤ 1

We establish the bound given in this theorem via a sequence of lemmas that present and
analyze an adversarial policy for a particular range of α. Since the adversary knows α, he
can choose the worst policy, i.e., achieve the pointwise maximum of the regret of the different
policies. We begin with a lemma that allows us to restrict our attention to a particular
subfamily of algorithms.

Lemma 2. There exists an optimal algorithm that never pairs known 0-agents until the types
of all agents are known.

Proof We argue the claim with an exchange argument. Suppose that the algorithm pairs
two known 0-agents in a round in which it also plays a team (u, v), where at least one of u, v
is unknown. If u, v are both 0-agents, then the algorithm will learn this whether it pairs u
and v or explores u and v with the known 0-agents. Both of these actions result in the same
regret. If exactly one of u, v is a 0-agent, then the algorithm again accrues no additional
regret by exploring u, v as opposed to pairing them. Moreover, the algorithm can only gain
more information about the types of u, v through exploration. Finally, if both u and v are
1-agents, then the algorithm incurs one less unit of regret and learns the types of both u
and v by exploring them with 0-agents as opposed to pairing them. By repeatedly applying
these swaps, we never increase the regret of the algorithm, nor reduce the set of deductions
that it can make about node types. When the swapping process finishes, we are left with an
algorithm of the claimed type.

By this lemma, we can, without loss of generality, restrict our attention to algorithms that
use all 0-agents for exploration.

Lemma 3. There is a policy for the adversary that ensures regret at least 13α
17 · n for all

α ≤ 1
2 .

Proof Recall that for α ≤ 1
2 , per-round regret is equal to the number of (0, 0)-teams that

were selected. Consider the following adversarial policy:
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Round 1: The algorithm chooses an arbitrary matching. The adversary reveals 4α
17 · n

(0, 0)-teams, giving regret 4α
17 · n.

Round 2: The algorithm explores with its 8α
17 · n known 0-agents. It will explore members

from
(

4α
17 + β

)
· n teams from round 1, for some 0 ≤ β ≤ 4α

17 . The adversary can label one
member from each of these teams as a 0-agent, giving regret

(
4α
17 + β

)
· n.

Round 3–4: To this point, the algorithm has learned the types of
(

12α
17 + β

)
· n 0-agents

and
(

4α
17 + β

)
· n 1-agents (the partners of 0-agents from successful teams). Therefore, the

algorithm again explores with 8α
17n known 0-agents in round 3; let S be the set of unknown

agents that is being explored, of size |S| = 8α
17n. Let I ⊆ S be a maximum independent set of

S in the unexplored subgraph. Since the unexplored subgraph is bipartite, |I| ≥ |S|2 = 4α
17 ·n.

There remain
(

5α
17 − β

)
·n unknown 0-agents. If |I| ≥

(
5α
17 − β

)
·n, then the adversary reveals

an arbitrary subset of I of size
(

5α
17 − β

)
· n as 0-agents. This gives regret

(
5α
17 − β

)
· n in

round 3, and brings the total accumulated regret to 13α
17 n.

Otherwise, the adversary reveals all of I as 0-agents. We write |I| =
(

4α
17 + γ

)
· n, for some

0 ≤ γ ≤
(
α
17 − β

)
. The regret in round 3 is then

(
4α
17 + γ

)
· n.

Since the exploration graph after round 2 is 2-regular, each 0-agent revealed in round 3 can
result in the revelation of at most two 1-agents (its neighbors in the exploration graph).
Therefore, after round 3, there are still at least

(
4α
17 − γ

)
·n more known 0-agents than known

1-agents. The algorithm uses these excess 0-agents for exploration in round 4. Since the
exploration graph is now 3-regular, the adversary can use a greedy construction to select an
independent set of at least one fourth of the explored nodes, containing at least

(
α
17 −

γ
4

)
· n

nodes. The number of remaining unknown 0-nodes at this point is
(
α
17 − β − γ

)
· n, so the

adversary can reveal min
((

α
17 − β − γ

)
· n,
(
α
17 −

γ
4

)
· n
)

=
(
α
17 − β − γ

)
· n 0-agents. This

gives regret
(
α
17 − β − γ

)
· n in round 4, bringing the total accumulated regret to 13α

17 n.

The remaining lemmas handle the case α ≥ 1
2 . Recall that here, the per-round regret is equal

to the number of (1, 1)-teams that were selected.

Lemma 4. The adversary has a strategy that ensures regret at least k
2 for each 1

2 ≤ α ≤ 1.

Proof The adversary reveals k
2 (1, 1)-teams in round 1, giving regret k

2 .

Note that by definition, k
2 = 1−α

2 · n. Next, we show that the adversary has an alternate
2-round strategy which establishes a different linear lower bound on the regret.

Lemma 5. The adversary has a strategy that ensures regret at least 3−4α
3 · n for each 1

2 ≤
α ≤ 1.

Proof In round 1, the adversary reveals α
3 · n (0, 0)-teams. The remaining teams are α

3 · n
(0, 1)-teams and 3−4α

6 · n (1, 1)-teams, giving regret 3−4α
6 · n. In round 2, the algorithm uses

the 2α
3 known 0-agents to explore. It must explore members of at least α

3 teams from round
1. The adversary can label one member each from α

3 of these teams as a 0-agent, giving
additional regret 3−4α

6 · n in round 2, and making the total accumulated regret 3−4α
3 · n.

The bound from Lemma 5 is strictly better than the one from Lemma 4 for 1
2 ≤ α < 3

5 .
Finally, we present a 3-round adversary strategy that establishes a third linear regret bound.
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Figure 1: Our regret bounds (Theorems 3 to 5) under the Strongest Link model, as functions of
α := n−k

n , the fraction of low-skill agents. The bounds match for 10
19 ≤ α ≤ 1.

Lemma 6. The adversary has a strategy that ensures regret at least 6−9α
4 · n for each 1

2 ≤
α ≤ 1.

Proof In round 1, the adversary reveals α
4 · n (0, 0)-teams. The remaining teams are α

2 · n
(0, 1)-teams and 2−3α

4 · n (1, 1)-teams, giving regret 2−3α
4 · n. In round 2, the algorithm uses

the α
2 ·n known 0-agents to explore, exploring members from

(
α
4 + β

)
·n successful teams from

round 1, for some 0 ≤ β ≤ α
4 . The adversary can label one member from each of these teams

as a 0-agent. Thus, the algorithm observes
(
α
4 + β

)
· n (0,0)-teams,

(
α
2 − 2β

)
· n (0,1)-teams,

and
(

2−3α
4 − β

)
· n (1,1)-teams, giving the algorithm regret

(
2−3α

4 − β
)
· n.

Note that every explored 0-agent in round 2 had been paired with a 1-agent in round 1.
Therefore, the algorithm again has α

2 ·n 0-agents with which to explore in round 3, and there
are

(
α
4 − β

)
unknown 0-agents. Note that the unresolved subgraph is bipartite after round

2, and at least half of the nodes explored by the algorithm must fall on the same side of
this bipartition. Therefore, the adversary can reveal at least min

(
1
2 ·

α
2 · n,

(
α
4 − β

)
· n
)

=(
α
4 − β

)
· n 0-agents in round 3. This gives regret

(
2−3α

4 + β
)
· n in round 3, so the total

regret is 6−9α
4 n.

The bound from Lemma 6 is strictly better than those from Lemmas 4 and 5 for 1
2 ≤ α <

6
11 .

Taking the pointwise maximum of the linear functions in the lemmas, we get Theorem 3.

The lower bound in Theorem 3 is plotted in Fig. 1, and notably varies greatly with α.
Nevertheless, we provide a policy (Algorithm 3) that manages to achieve nearly matching
regret across all α, while being agnostic of k (and thus α). Both bounds are plotted in Fig. 1;
despite the functions being piecewise linear, they match exactly for α ≥ 10

19 , and UOR(α) −
LOR(α) < 0.018 for all α.

4.1 The MaxExploit with 4-Cliques Algorithm

To simplify our analysis, we introduce some terminology: we say that two unknown 0-agents
become discovered when they are paired to form an unsuccessful team. An unknown agent
is explored when its type is revealed by pairing it with a known 0-agent. Our policy for this
setting, MaxExploit with 4-Cliques, is given in Algorithm 3. The algorithm exploits
the inferred types of agents to the greatest possible extent; a maximal number of known 1-0
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agent teams are played in each round. Exploration is only done using known 0-agents that
cannot be included in such a pair. If only two agents in a 4-cycle are explored, we treat the
other two agents as unknown, even if their type is deducible.

Algorithm 3 MaxExploit with 4-Cliques

Round 1: Select an arbitrary matching.
while #{known 0-agents} > #{known 1-agents} and #{unknown agents} > 0 do

Pair each known 1-agent with a known 0-agent.
Use extra known 0-agents to explore both members of successful teams.
(In round 3, explore all members of 4-cycles whenever possible1.)
Round 2: Re-pair remaining unknown successful teams into 4-cycles.
(If number of remaining unknown successful teams is odd, repeat one team.)
Round 3: In each 4-cycle with undiscovered agents, re-pair to form a 4-clique.
Round 4+: Re-play the matching from round 1 on unexplored successful teams.

First, to see that the algorithm terminates, note that in each iteration of the loop, at least
one known 0-agent is used for exploration, revealing the type of another agent. Thus, the
algorithm makes progress and eventually terminates.

Next, note that unknown agents are always in successful teams throughout the algorithm (as
both members of an unsuccessful team can be deduced as 0-agents). Upon termination, the
algorithm can play an optimal matching: either all agents are known, or there are enough
known 1-agents to match all known 0-agents, and the other successful teams of unknown
agents can be safely replayed.

Let dt be the number of 0-agents discovered in round t by pairing two unknown agents, and
et the number of 0-agents revealed by exploration with a known 0-agent. We define

∆t := #{known 0-agents after round t} −#{known 1-agents after round t}

The following lemma studies how ∆t evolves over rounds t.

Lemma 7. ∆1 = d1, and 2et = ∆t ≤ ∆t−1, for all t ≥ 2.

Proof In round 1, the algorithm discovers d1 0-agents, and no 1-agent (since there is no
exploration); hence ∆1 = d1. Consider the 4-cycle and 4-clique edges played in rounds 2–
3. If such an edge comprises two 0-agents, then the other two agents in its cycle or clique
must be 1-agents. In particular, the addition of dt known 0-agents in these rounds is exactly
counterbalanced by the deduction of their neighboring dt 1-agents, so discovery does not
contribute to ∆t+1 −∆t.

Next, consider any round t ≥ 2. The algorithm first pairs all known 1-agents with known
0-agents, so exactly ∆t−1 agents are used for exploration. Each exploration must discover
either a 0-agent or a 1-agent, so ∆t = ∆t−1 + et − (∆t−1 − et) = 2et. Since members of
successful teams are explored in pairs, at most half of all explorations can reveal 0-agents.
Thus, et ≤ ∆t−1

2 .

For the subsequent analysis, there are two distinct regimes depending on the fraction of low-
skill agents α. When most agents are low-skill (α > 1

2), the optimal configuration includes

11



some (0, 0)-teams, but no (1, 1)-teams, and rt equals the number of (1, 1)-teams in Mt. On
the other hand, when most agents are high-skill (α ≤ 1

2), the optimal configuration consists
entirely of successful teams, and an algorithm’s round-t regret rt is the number of (0, 0)-teams
in Mt. Consequently, the analysis in each regime is very different.

4.2 Majority High-Skill Regime (α ≤ 1
2
)

We begin the analysis by focusing on the case when α ≤ 1
2 . Recall that the total regret in

this regime equals the total number of (0, 0) teams the algorithm plays.

Theorem 4. For α ≤ 1
2 , Algorithm 3 has regret at most 4

5 · αn.

Proof First, note that in the regime α ≤ 1
2 , the algorithm never pairs two known 0-agents;

known 0-agents are paired with known 1-agents or used for exploration. Hence, the number
of (0, 0)-teams selected, and thus the regret, in round t is et + dt

2 . (Note that e1 = 0.)

After round 3, by Lemma 7, there are 2e3 more known 0-agents than 1-agents. The unresolved
agents are contained in 4-cliques of successful teams, which must each contain at least three
1-agents. Thus, exploring any 0-agent means that the algorithm can deduce three 1-agents.
After e3 such explorations, the algorithm locates 3e3 1-agents, terminating the loop. The
regret incurred in rounds 4 and later is thus at most e3, giving total regret at most d1

2 + d2
2 +

d3
2 + e2 + 2e3.

We can now bound the regret incurred by Algorithm 3 by formulating the adversary’s problem
of choosing the worst-case number of revealed zeros in each round as an LP with variables
{d1, d2, d3, e2, e3}. Applying Lemma 7 to rounds 2 and 3, we obtain that e2 ≤ d1

2 and e3 ≤ e2.
In addition, d1 +d2 +d3 + e2 + 2e3 ≤ αn ensures that the number of 0-agents revealed by the
adversary is at most the total number of 0-agents. Put together, we get the following LP:

Maximize: d1
2 + d2

2 + d3
2 + e2 + 2e3

Subject to: e2 ≤ d1
2

e3 ≤ e2

d1 + d2 + d3 + e2 + 2e3 ≤ αn
d1, d2, d3, e2, e3 ≥ 0

Solving, we get (d1, d2, d3, e2, e3) = (2αn
5 , 0, 0, αn5 ,

αn
5 ) as the adversary’s best strategy, with

regret at most 4
5αn.

4.3 Majority Low-Skill Regime (α > 1
2
)

A different, more involved, analysis shows that Algorithm 3 is also near-optimal when α > 1
2 .

Theorem 5. For α > 1
2 , Algorithm 3 learns an optimal matching after incurring regret at

most UOR(α) · n, where

UOR(α) =


10−16α

5
1
2 ≤ α <

10
19 ,

6−9α
4

10
19 ≤ α <

6
11 ,

3−4α
3

6
11 ≤ α <

3
5 ,

1−α
2

3
5 ≤ α ≤ 1.
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Note that limα↓ 1
2
UOR(α) = 2

5 , which matches limα↑ 1
2
UOR(α) from Theorem 4. Before pro-

ceeding, we define s00
t , s

01
t , s

11
t to be the number of (0, 0), (0, 1), and (1, 1)-teams the algorithm

plays in round t, respectively. Since there are (1−α)n 1-agents in total, s01
t = (1−α)n−2s11

t ;
in turn, since there are αn 0-agents, s00

t = 1
2 · (αn− s

01
t ) = s11

t + (α − 1
2) · n > s11

t . We now
prove Theorem 5 via a series of lemmas.

Lemma 8. The adversary has a best response to Algorithm 3 with the following properties:

1. It never reveals pairs of unknown agents as (0, 0)-teams after round 1.

2. It never reveals any (1, 1)-team until all (0, 1)-teams have been revealed.

Proof For the first claim, suppose that the adversary reveals a (0, 0)-team among the re-
paired teams in round t = 2 or t = 3. The 4-cycle or 4-clique containing this (0, 0)-team
contains two 0-agents and two 1-agents, so two (0, 1)-teams were selected in each of the first
t − 1 rounds. The adversary can force the same regret, and provide the same information,
by relabeling these agents so a (0, 0)-team and a (1, 1)-team are revealed in round 1, the two
1-agents are explored in round 2, and (if t = 3) the (0, 1)-teams are repeated in round 3.
By repeating this relabeling, we arrive at an adversary strategy of the same regret, of the
claimed form.

For the second claim, recall that the algorithm’s regret in the regime α > 1
2 is exactly the

number of (1, 1)-teams it plays. We will describe a scheme charging (1, 1)-teams played in
round t to 0-agents explored in round t.

Consider some round t ≥ 2 in which s11
t (1, 1)-teams are played. Since s00

t > s11
t , and all

(0, 0)-teams result from exploration2 by the first claim, we can charge one distinct explored
0-agent for each such (1, 1)-team. Thus, the number of uncharged explored 0-agents in round
t is exactly s00

t − s11
t = (α− 1

2) · n, independent of t and s11
t .

The total number of 0-agents explored in rounds t ≥ 2 is exactly s01
1 . If the algorithm runs for

T rounds, exactly (T −1) · (α− 1
2) ·n explored 0-agents remain uncharged. Thus, the number

of charged 0-agents, which equals the regret incurred after round 1, is s01
1 −(T −1) ·(α− 1

2) ·n.
Conditioned on s00

1 , s
01
1 , s

11
1 , the regret is therefore maximized by minimizing T ; that is, the

adversary wants the algorithm to finish in as few rounds as possible. To minimize the number
of rounds T , the adversary should maximize the number of 0-agents available for exploration.
The adversary accomplishes this by having the algorithm explore (0, 1)-teams before any
(1, 1)-teams.

We now focus, without loss of generality, on such an adversary. This lets us bound the regret
in terms of (s00

1 , s
01
1 , s

11
1 ).

Lemma 9. Conditioned on s00
1 , s

01
1 , s

11
1 , Algorithm 3 has regret at most⌊

s01
1 + s11

1

s00
1

⌋
s11

1 + min(s11
1 , (s

01
1 + s11

1 ) mod s00
1 ).

2except in the last round, where known (0,0)-teams may be played; however, no (1,1)-teams are played in
this round.
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Proof From Lemma 8 we know that only (0, 1)-teams are explored before any (1, 1)-team
is explored. Each explored (0, 1)-team results in pairing a 0-agent with a newly discov-
ered 1-agent, and also adds a known 0-agent. Thus as long as the algorithm explores only
(0, 1)-teams, the number of pairs of 0-agents available for exploration stays constant at s00

1 .
Therefore, the total number of rounds of exploration until all agents in successful teams are

explored is
⌈
s011 +s111
s001

⌉
. One subtlety here is that the exploration of (1, 1)-teams decreases the

available 0-agents. However, because s11
1 < s00

1 , the first round in which a (1, 1)-team can be
explored is one round before the last; in this case, the last round only explores (1, 1)-teams,
and the number of 0-agents available for this exploration exceeds the number of 1-agents to
be explored. Thus, the bound on the number of rounds of exploration does hold. In the last
round of exploration, no (1, 1)-teams can be played, so no regret is incurred. We therefore

focus on the first T =
⌊
s011 +s111
s001

⌋
rounds of exploration. Again because s11

1 < s00
1 , none of the

first T − 1 rounds of exploration explore any (1, 1)-team; thus, each of these rounds, as well
as the very first round of the algorithm, incurs a regret of s11

1 .

In round T , the total regret is the number of (1, 1)-teams explored in round T + 1 (because
these teams are still played in round T ). This number is either (s01

1 + s11
1 ) mod s00

1 (if only
(1, 1)-teams are explored in round T + 1, then it is the total number of explored teams in
round T+1), or s11

1 (if some (0, 1)-teams are explored in round T+1, then all (1, 1)-teams are
explored in round T + 1). Thus, the regret in the T th round of exploration is the minimum

of the two terms. We thus obtain the total regret of the algorithm as:
⌊
s011 +s111
s001

⌋
· s11

1 +

min(s11
1 , (s

01
1 + s11

1 ) mod s00
1 ).

s00
t turns out to be further constrained, as follows:

Lemma 10. In Algorithm 3, if the adversary reveals 0-agents only by exploration in rounds
t ≥ 2, then s00

1 > α
5n.

Proof The number of 0-agents discovered in round 1 is 2s00
1 . In rounds 2 and 3 combined,

the algorithm discovers an additional e2 + e3 0-agents. The number of 1-agents discovered
in round 2 is ∆1 − e2 = 2s00

1 − e2, and in round 3, it is ∆2 − e3 = 2e2 − e3, by Lemma 7.
Thus, the number of unknown 0-agents after round 3 is αn− 2s00

1 − e2− e3, and the number
of unknown 1-agents is (1 − α) · n − 2s00

1 − e2 + e3. But notice also that after round 3, all
unknown agents form 4-cliques of successful edges, which can contain at most one 0-agent
each. Therefore, there must be at least three times as many remaining 1-agents as 0-agents,
so (1 − α) · n − 2s00

1 − e2 + e3 ≥ 3(αn − 2s00
1 − e2 − e3). Rearranging, we obtain that

4s00
1 ≥ (4α − 1) · n − 2e2 − 4e3. By Lemma 7, we get that e3 ≤ e2 ≤ s00

1 , so the previous
inequality in particular implies that 4s00

1 ≥ (4α − 1) · n − 6s00
1 , or s00

1 ≥ 4α−1
10 · n > α

5 · n,
because α > 1

2 .

To conclude, we get the piecewise-linear bound in Theorem 5 by maximizing the bound
in Lemma 9 subject to the constraint in Lemma 10 (and using s01

t = αn − 2s00
t , s11

t =
s00
t − (α− 1

2)n).

Recall that Lemma 9 establishes the following regret bound:
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R(s00, s01, s11) :=
⌊
s01+s11

s00

⌋
· s11 + min

(
s11, (s01 + s11) mod s00

)
.

To obtain a more convenient form, we now rewrite R as a function of only s00.

Lemma 11. The regret bound can be expressed as a function of s00 as

fα(s00) :=
⌊

n
2s00

⌋
·
(
n
2 − αn

)
+ min

(⌊
n

2s00

⌋
· s00, αn− s00

)
.

Proof Using that s01 = αn − 2s00 and s11 = n
2 − αn + s00, we can simplify the regret

expression as follows:

R(s00, s01, s11) =
⌊
s01+s11

s00

⌋
· s11 + min

(
s11, (s01 + s11) mod s00

)
=
⌊

n
2s00
− 1
⌋
· s11 + min

(
s11, n2 mod s00

)
(because s01 + s11 = n

2 − s
00)

=
⌊

n
2s00
− 1
⌋
· s11 + min

(
s11, n2 − s

00 ·
⌊

n
2s00

⌋)
(because n

2 mod s00 = n
2 − s

00 ·
⌊

n
2s00

⌋
)

=
⌊

n
2s00

⌋
· s11 + min

(
0, n2 − s

11 − s00 ·
⌊

n
2s00

⌋)
=
⌊

n
2s00

⌋
·
(
n
2 − αn+ s00

)
+ min

(
0, αn− s00 − s00 ·

⌊
n

2s00

⌋ )
(because s11 = n

2 − αn+ s00)

=
⌊

n
2s00

⌋
·
(
n
2 − αn

)
+ min

(⌊
n

2s00

⌋
· s00, αn− s00

)
= fα(s00).

Figure 2: The function fα(s00) for α = 0.6. The local maxima occur at 0.12, 0.15, 0.2, and
0.3 (i.e., at α

z for z ∈ {2, 3, 4, 5}).

Lemma 12. For any α ≥ 1
2 , R(s00, s01, s11) is maximized when s00

n = α
z for some integer

z ≥ 2. This implies that

R(s00, s01, s11) ≤ max
z∈Z>0

{
(z − 1) ·

(
1
2 − α+ α

z

)}
· n = max

z∈Z>0

{
z(z−1)−2(z−1)2α

2z

}
· n. (1)
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Proof The function fα(s00) derived in Lemma 11 has a saw-tooth shape (see Fig. 2).

We first prove that at any global maximum of fα(·), the two terms under the minimum must
be equal, i.e.,

⌊
n

2s00

⌋
· s00 = αn− s00. We do so by distinguishing two cases:

1. If n
2s00

is not an integer, then
⌊
n
x

⌋
is constant for x in a small interval around s00. In this

interval, the first term of the minimum is increasing in s00 and the second decreasing in
s00 (while the term before the minimum is constant in this interval). Therefore, if the
two terms under the minimum were not equal, by increasing or decreasing s00 slightly,
the minimum could be increased.

2. If n
2s00

is an integer, then we first argue that the minimum must equal the first term.

The reason is as follows: when s00 is decreased slightly,
⌊

n
2s00

⌋
stays constant, and the

s00 factor decreases slightly (while the term outside the minimum stays constant). On
the other hand, αn − s00 increases slightly; if the first term were strictly larger than
the minimum, then the minimum could be increased by slightly decreasing s00.

On the other hand, when n
2s00

is an integer, the first term under the minimum equals
n
2 , while the second equals αn− s00. Because αn is the number of 0-agents, αn− s00 is
the number of pairs including at least one 0-agent, which is at most the total number
of pairs, n

2 . Therefore, the minimum must also equal the second term.

Thus, we have shown that
⌊

n
2s00

⌋
· s00 = αn− s00 at any global maximum of fα. Rearranging

this equation, we obtain that α =
⌊

n
2s00

+ 1
⌋ s00
n at any local maximum. Note that s00 ≤ αn

2 ,

so
⌊

n
2s00

+ 1
⌋

is an integer, and at least 2. Thus, any global maximum occurs when s00

n = α
z

for some integer z ≥ 2. To derive the forms in Inequality (1), we equate the two terms in the
minimum expression for s00 = αn

z . This gives us that
⌊
z

2α

⌋
· αnz = αn · z−1

z , so
⌊
z

2α

⌋
= z − 1.

Plugging these expressions into fα, we find that

fα(αnz ) =
⌊
z

2α

⌋
·
(
n
2 − αn

)
+
⌊
z

2α

⌋
· αnz =

⌊
z

2α

⌋
·
(

1
2 − α+ α

z

)
· n = (z − 1) ·

(
1
2 − α+ α

z

)
· n.

This completes the proof of the lemma.

Using Lemma 10, we have the additional constraint that z ≤ 5. In this case, Eq. (1) simplifies
to

max
{

0, 1−α
2 , 3−4α

3 , 6−9α
4 , 10−16α

5

}
· n.

By determining which of these linear functions is largest for each 1
2 < α ≤ 1, we obtain the

bound from Theorem 5.

5 The Weakest Link Setting (AND)

Finally, we consider the Boolean AND synergy function. If, as before, we interpret 0/1-agents
as having low/high skill, then (in the terminology of Johari et al. [12]), this corresponds to
a weakest link model: the difficulty of the task ensures any team with a low-skill member is
unsuccessful. To simplify the analysis, we assume throughout that k is even.
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Theorem 6. For the weakest link model, any algorithm incurs regret at least LAND(n, k) :=
n− k.

We will prove this theorem by describing a greedy policy of the adversary that establishes the
lower regret bound n−k for the weakest link model. Note that the undiscovered subgraph for
this model consists entirely of unsuccessful edges. Thus, the 1-agents form an independent
set in this subgraph.

A labeling is a function λ : [n] → {0, 1} assigning the skill of each agent. It is viable if∑n
i=1 λ(i) = k (it assigns exactly k 1-agents) and it agrees with all previously revealed edges.

Suppose that G is an undiscovered subgraph on which the algorithm is about to play a
matching M . Further suppose that there are j undiscovered 1-agents in G. Then, a subset
S ⊆ M is a revealable set if there exists a viable labeling under which the edges in S are
successful, and the edges in M \ S are unsuccessful.

A minimal revealable set is a revealable set for which no proper subset is a revealable set.
Note that whenever |M | ≥ j

2 , any j
2 -subset of M is revealable: all remaining nodes can be

0-agents according to the previously revealed information. Therefore, a minimal revealable
set exists. Note that if G∪M has an independent set of size j, then ∅ is the unique minimal
revealable set. With this terminology, we can describe the policy of the adversary in two
consecutive steps per round:

1. Iterate over the explored agents u, i.e., the yet-undiscovered agents that are paired with
a discovered 1-agent in this round. If revealing u as a 0-agent still admits a viable
labeling of the remaining agents, the adversary reveals u as a 0-agent. Otherwise, u is
revealed as a 1-agent.

2. Let G denote the resulting undiscovered graph after labeling all nodes whose type could
be deduced from step 1. The adversary chooses a minimal revealable set S for G, labels
these edges as successful, and the remaining edges as unsuccessful.

To argue the regret bound, we make use of the following three lemmas.

Lemma 13. Let u be a 1-agent explored by being paired with a known 1-agent. Let w be a
0-agent that was discovered through its connection to u. Then, in all viable labelings, w is
connected to at least two 1-agents.

Proof For the sake of contradiction, suppose that there is a viable labeling λ in which w’s
only 1-agent connection is to u. Consider the alternative labeling λ′ which switches the labels
of u and w in λ, but keeps all other labels the same. This labeling is also viable at this point
since neither w (by assumption) nor u (it is undiscovered) has been paired with any other
1-agent. However, the existence of λ′ contradicts the adversary’s necessity to reveal u as a
1-agent.

Lemma 14. Let G be an undiscovered subgraph from step 2 containing j 1-agents. Let S be
a minimal revealable set, and let w be a 0-agent that was discovered through its connection to
an endpoint u of an edge in S. Then, in all viable labelings (assigning type 1 to all3 endpoints

3Note that no edge in S can have been played in a previous round — otherwise, revealing it as a successful
edge would not leave any viable labelings, as it would contradict the earlier revelation as unsuccessful. This
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of edges in S), w is connected to at least two 1-agents.

Proof For the sake of contradiction, suppose that there is a labeling λ for which the only
1-agent that w is connected to is u. Let v denote the other endpoint of u’s revealed 1-edge
(so (u, v) ∈ S). Finally, let I denote a set of j − 2|S| 1-agents (given by λ) in the resulting
undiscovered subgraph (guaranteed to exist because S is revealable). By assumption, w
is connected to neither v nor any agent in I. Additionally, no agent in I is connected to
v (because the agents in I are undiscovered after (u, v) is revealed as a 1-edge). Therefore,
I∪{w, v} is an independent set of size j−2|S|+2 in G. However, this means that S \{(u, v)}
is a revealable set (a viable labeling λ′ is obtained by starting with λ, and switching the label
of u to 0 while switching the label of w to 1), contradicting the minimality of S.

Lemma 15. Suppose that the adversary (using this policy) has just revealed the first 1-
edge(s). Then, in any viable labeling λ, each undiscovered 0-agent is connected to at least one
undiscovered 1-agent.

Proof Let S be the minimal revealable set that was just revealed by the adversary. Fix
any viable labeling λ, and let I denote the set of undiscovered 1-agents in λ. For the sake
of contradiction, suppose that there is an undiscovered 0-agent w that is not paired with an
agent in I. Then, I ∪ {w} is an independent set of size j − 2|S| + 1. If (u, v) ∈ S is any
successful edge that was just revealed, then u has no edges to I (by viability of λ) nor to w
(or w would have been discovered as a 0-agent). Therefore, I ∪ {w, u} is an independent set
of size j − 2|S| + 2, so S \ {(u, v)} is a revealable set; the viable labeling λ′ witnessing this
is obtained from λ by switching the label of w to 1 and the label of v to 0. This contradicts
the minimality of S.

Using these lemmas, we can show that any policy incurs a regret of at least n− k under this
adversarial policy.

Proof of Theorem 6 It suffices to argue that, at the time of its discovery, each 0-agent must
have been paired with at least two 1-agents in any viable labeling. (Lemma 15 guarantees
that all 0-agents are connected to a 1-agent after the first discovery, so once all 1-agents
are discovered, all 0-agents will also have been discovered.) Lemmas 13 and 14 ensure this
for all 0-agents that are discovered by having a connection to a 1-agent that is discovered.
Lemma 15 ensures this for all 0-agents u that are explored by a known 1-agent w. This is
because u will be connected to w and the guaranteed undiscovered 1-agent v, which it was
connected to earlier (implying that v 6= w).

Therefore, the algorithm plays at least 2(n− k) (0, 1)-edges, leading to regret at least n− k.

5.1 The Ring Factorization with Repairs Algorithm

The fact that the regret of an algorithm is half the number of (0, 1)-teams selected suggests
that we want the algorithm’s chosen matchings to quickly locate (and pair) all of the 1-
agents, while minimizing the number of times each 0-agent is paired with a 1-agent. Playing
matchings according to a 1-factorization (that is, a partition of the complete graph Kn into

would contradict the definition of S being revealable.
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perfect matchings) ensures that no team is ever repeated. This intuition is used in the
Exponential Cliques algorithms of Johari et al. [12], who show that when each agent has
independent Bernoulli(k/n) type, this algorithm has expected regret 3

4(n−k)+o(n), which is
asymptotically optimal. Against an adaptive adversary, however, an arbitrary 1-factorization
is not enough to get good regret; for example, a 1-factorization that first builds the Turán
graph T (n, nk ) [22, 1] has regret 1

2k(n − k). Similarly, the performance of Exponential
Cliques in the worst case is also much worse.

Lemma 16. Exponential Cliques incurs regret 2(n−k−1) against an adaptive adversary.

Proof Consider an instance on n = 2j + 2 agents with k = 2 having high skill. An adaptive
adversary can ensure that the two 1-agents comprise the last unexplored team. Over its first
2j−1 rounds, Exponential Cliques builds a 2j-clique in the explored subgraph while repeating
the remaining team 2j −1 times. Subsequently, it must spend 2j additional rounds exploring
all teams comprising a member of this repeated edge and a member of the clique, resulting
in regret 2(2j − 1) = 2(n− k − 1).

Our main algorithm for this setting, Ring Factorization with Repairs, leverages a par-
ticular 1-factorization, which we call the Ring Factorization. We organize the agents into
two nested rings, and choose matchings so that closer agent pairs under this ring geometry
are matched earlier. In the first round, agents in corresponding positions in the rings are
matched. Over the next four rounds, matchings are chosen to pair each agent with the four
agents in adjacent positions to it in the rings, and this process repeats at greater distances.
The structure and order of the four matchings chosen in each “phase” are critical. A for-
mal description of this 1-factorization is given in Appendix A, and we visualize the first 5
matchings in the construction for n = 10 and n = 12 in Fig. 3.

n = 10 (m = 5) :

n = 10 (m = 5) :

Figure 3: The first five rounds (i.e., Phases 0 and 1) of Ring Factorization on 10 (top) and
12 (bottom) agents. The last four matchings illustrate the general matching sequence for cycles in
intermediate phases; the blue highlighted section of each matching is repeated based upon the size of
the cycle.

Theorem 7. Ring Factorization with Repairs (Algorithm 4) locates an optimal match-

ing after incurring regret at most UAND(n, k) := n− k +
⌊

min(k,n−k)
4

⌋
.
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Algorithm 4 Ring Factorization with Repairs (Sketch)

while #{unknown agents} > 0 do
Select a matching via Ring Factorization for n.
if a (1, 1)-team is revealed then

Perform a case-specific “repair” step (possibly over multiple rounds) that partitions
agents into known (0, 0)-teams, known (1, 1)-teams, and an intermediary stage of the
Ring Factorization construction of size n′ < n. (See Appendix B.)
Play known (0, 0)- and (1, 1)-teams, and continue playing matchings according to Ring
Factorization on the remaining n′ agents.

Proof Sketch As mentioned before, the double-ring structure of our factorization defines
a notion of distance between agents (namely, the difference between their column indices
modulo m). By selecting matchings according to this factorization, each agent is paired
up with other agents in non-decreasing order of distance. Consider this pairing from the
perspective of a 0-agent x. We will show that roughly speaking (with some exceptions which
require technical work and slightly weaken the bound), x will be paired with at most two
1-agents before being identified as a 0-agent. If each 0-agent is paired with at most two 1-
agents before discovery, then we get an overall regret bound of n−k. Consider three 1-agents
{y1, y2, y3}, all located in different columns from x. Then, two of these 1-agents — say, y1

and y2 — lie on the same side of x. Thus, y1 and y2 are strictly closer to each other than the
further of the two (say, y1) is to x. In particular, y1 and y2 were paired before y1 is paired
with x, and so must have been revealed as 1-agents. Thus, y1 will never be paired with x.
Since this holds for every triple of 1-agents, x cannot be paired with three 1-agents.

While the above argument encapsulates the main intuition, the technical challenge is removing
the assumption that y1, y2, y3 were all in different columns from x. “Repairing” the cycle to
account for the case of a 1-agent in the same column as x largely accounts for the additional
term in the regret bound. The full analysis of these “repair” steps is intricate; see Appendix B
for details.

The bounds of Theorems 6 and 7 are off by an additive term bmin(k, n− k)/4c. The lower
bound is simpler, and it is tempting to think that it may be tight; unfortunately, this is not
true in general; in Appendix C, we show that any algorithm on the instance with n = 10, k = 4
must incur regret at least 7 (which coincidentally matches the upper bound in Theorem 7,
though it is unclear if this extends to larger settings). Closing this gap is an interesting and
challenging direction for future work.

6 Conclusion

Our work provides near-optimal regret guarantees for learning an optimal matching among
agents under any symmetric function of two binary variables. While our results are specific to
each function, they exhibit several noteworthy common features. First, although we consider
an adaptive adversary, it is not hard to see that the regret bounds with i.i.d. Bernoulli
types can only improve by a small constant factor; such a small gap between stochastic and
adversarial models is uncommon. Next, for all our settings, minimizing regret turns out to
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require maximal exploitation (in contrast to quickly learning all agent types, which would
benefit from more exploration). Finally, the problems appear to get harder for k = n

2 , and
also handling the weakest link setting (i.e., the Boolean AND function) is more challenging
than other synergy functions. These phenomena hint at underlying information-theoretic
origins, and formalizing these may help in reasoning about more complex models.

Our work raises three natural future directions:

1. It would be desirable to close the gaps between our bounds for the OR and AND
settings. In each case, however, our results suggest that the optimal procedures may
depend heavily on number-theoretic properties of n and k which can expose a further
level of complication.

2. We consider only perfect feedback, which in itself presented interesting challenges, but
may be unrealistic in real-world settings. Our results likely extend to some noisy feed-
back models by repeatedly playing a team and averaging their scores. However, quan-
tifying the relationship between the amount of noise and the expected additional regret
is an open problem.

3. The restriction to teams of size 2, and binary agent types, are the main restrictions
of our model. For a more general theory of team formation, it is desirable to consider
larger teams and other synergy functions (in particular, threshold functions); doing so
is a rich and challenging open direction.
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A Ring Factorization: Detailed Construction

Let m := n
2 , and arbitrarily label the n agents as u0, u1, . . . , um−1 and v0, v1, . . ., vm−1. In

Fig. 3, the ui are the nodes on the inner ring; the pair of vertices with matching indices form
a “column” of the ring. We separate the factorization into

⌈
m+1

2

⌉
phases (numbered starting

from 0). In each phase i, we select matchings to exactly add the edges connecting agents
whose subscripts are i apart (modulo m). Note that agent subscripts differ by at most bm2 c,
so this accounts for all edges.

Phase 0: This phase lasts for 1 round

Select the edges {(u0, v0), (u1, v1), . . . , (um−1, vm−1)}.

Phase i (1≤i< m
2
): Each of these phases lasts 4 rounds.

Consider the graph on [m] with an edge between two indices iff they are exactly i apart modulo
m. This graph is a union of gcd(m, i) disjoint cycles, each containing j := m

gcd(m,i) ≥ 3 indices.

It suffices to define a procedure for selecting perfect matchings within each of these cycles.
Focus on one cycle of length j, and relabel the corresponding 2j agents as u′0, u

′
1, . . . , u

′
j−1

and v′0, v
′
1, . . . , v

′
j−1. There are two cases based on whether j is even or odd.

If j is even, the factorization uses the following four matchings:

Round 1:
{

(u′0, v
′
1), (u′1, v

′
2), . . . , (u′j−1, v

′
0)
}

Round 2:
{

(u′0, u
′
1), (u′2, u

′
3), . . . , (u′j−2, u

′
j−1)

}
∪
{

(v′1, v
′
2), (v′3, v

′
4), . . . , (v′j−1, v

′
0)
}

Round 3:
{

(v′0, u
′
1), (v′1, u

′
2), . . . , (v′j−1, u

′
0)
}

Round 4:
{

(u′1, u
′
2), (u′3, u

′
4), . . . , (u′j−1, u

′
0)
}
∪
{

(v′0, v
′
1), (v′2, v

′
3), . . . , (v′j−2, v

′
j−1)

}
If j is odd, the factorization uses the following four matchings:

Round 1:
{

(u′0, v
′
1), (u′1, v

′
2), . . . , (u′j−1, v

′
0)
}

Round 2:
{

(v′0, u
′
1)
}
∪
{

(u′2, u
′
3), (u′4, u

′
5), . . . , (u′j−1, u

′
0)
}
∪
{

(v′1, v
′
2), (v′3, v

′
4), . . . , (v′j−2, v

′
j−1)

}
Round 3:

{
(v′0, v

′
1), (u′1, u

′
2)
}
∪
{

(v′2, u
′
3), (v′3, u

′
4), . . . , (v′j−1, u

′
0)
}

Round 4:
{

(v′1, u
′
2), (u′0, u

′
1)
}
∪
{

(u′3, u
′
4), . . . , (u′j−2, u

′
j−1)

}
∪
{

(v′2, v
′
3), (v′4, v

′
5), . . . , (v′j−1, v

′
0)
}

Since each node is part of exactly one cycle, taking the union over all cycles gives a perfect
matching in each of the four rounds.

Phase m
2

(if m is even): This phase lasts 2 rounds.

Round 1:
{

(u0, um
2

), (u1, um
2

+1), . . . , (um
2
−1, um−1)

}
∪
{

(v0, vm
2

), (v1, vm
2

+1), . . . , (vm
2
−1, vm−1)

}
Round 2:

{
(u0, vm

2
), (u1, vm

2
+1), . . . , (um

2
−1, vm−1)

}
∪
{

(v0, um
2

), (v1, um
2

+1), . . . , (vm
2
−1, um−1)

}
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B Details of the Ring Factorization with Repairs Algorithm

Here, we present a proof of Theorem 7, along with the missing details of the algorithm Ring
Factorization with Repairs.

We first note that it suffices to prove a regret bound of n− k+
⌊
k
4

⌋
. For suppose that k > n

2 .
In round 1, there can be at most n− k unsuccessful teams, meaning that some (1, 1)-teams
must be revealed. An optimal matching then consists of these initially revealed (1, 1)-teams,
plus an optimal matching on the unresolved agents. Since the unresolved agents were each
part of an unsuccessful team in round 1, at least half of them are 0-agents. Notably, the
number of 1-agents that remain is at most n− k. Of course, the initial (1, 1)-teams did not
contribute any regret, so the instance has been reduced to a smaller (n′, k′)-instance, with

n′ − k′ = n − k and k′ ≤ n − k. If we can obtain a regret bound of n′ − k′ +
⌊
k′

4

⌋
, then for

the original instance, it results in a regret bound of

n′ − k′ +
⌊
k′

4

⌋
≤ n− k +

⌊
n− k

4

⌋
.

Recall that all the regret incurred by an algorithm can be charged to the (0, 1)-pairs that it
plays. More precisely, any two (0, 1)-pairs played in a round could be re-paired into a (0, 0)-
pair and a (1, 1)-pair, which would contain one successful pair instead of zero. Therefore, we
can charge half a unit of regret to each (0, 1)-pair played by an algorithm. Hence, the total
regret is bounded by

Regret ≤ 1

2
·# {explored (0, 1)-pairs} =

1

2

∑
1-agent v

# {(0, 1)-teams including v} . (2)

We will use this viewpoint, and analyze the regret for each 1-agent separately, by analyzing
how many 0-agents it was paired with. As described in the proof sketch, ideally, we would
like to prove that each 1-agent is paired only with two 0-agents. This is not quite true, and
we need a more intricate argument to obtain the (slightly weaker) bound of the theorem.

The sketch of the Ring Factorization with Repairs Algorithm exhibits a natural re-
cursive structure, making it amenable to an inductive argument. In particular, we argue by
induction on n that Ring Factorization with Repairs on n agents (n even) with k ≤ n
1-agents (k even) locates an optimal matching after incurring regret at most n − k +

⌊
k
4

⌋
.

Along the way, we flesh out the details of the repairing step.

The base case n ∈ {0, 2} is trivial, as there is a unique matching that incurs regret zero. The
inductive hypothesis states that for some n ≥ 4, for every even n′ < n and every even k′ with
0 ≤ k′ ≤ n′, the Ring Factorization with Repairs Algorithm on n′ agents, k′ of whom

are 1-agents, determines an optimal matching after incurring regret at most n′ − k′ +
⌊
k′

4

⌋
.

For the inductive step, consider an instance with n agents, k of whom are 1-agents. If k ≤ 1,
then any matching procedure incurs no regret. In particular, the Ring Factorization
with Repairs algorithm satisfies the upper regret bound. Therefore, it suffices to reason

25



about instances with k ≥ 2. Since the Ring Factorization with Repairs algorithm
initially selects matchings according to the ring factorization (a 1-factorization), it must in
some round play an edge between two 1-agents for the first time. We perform a case analysis
based on the time of this first 1-edge discovery below.

The inductive step relies on a slightly nuanced way to calculate the total regret of the proce-
dure. Suppose that after round r, the algorithm is able to remove z discovered 0-agents (by
pairing them up permanently) and w 1-agents (also pairing them up permanently), with the
following additional properties:

• By adding edges which can be deduced to be unsuccessful from the observed outcomes,
the induced subgraph on the remaining agents can be made isomorphic to an interme-
diary stage of a smaller ring factorization.

• There is at most one discovered 1-agent that is not removed.

The 1-agents that the algorithm removes will never again be paired with a 0-agent, so they
have already accumulated their share of the regret. The remaining k − w 1-agents have
cumulatively been incident on r(k − w) − x (0,1)-edges, where x ∈ {0, 1} is the number of
removed 1-agents that the discovered, un-removed 1-agent had been paired with (if there
was such an agent). Ring Factorization with Repairs will ensure that in the sub-
factorization, the k − w 1-agents will each be incident on exactly r (0, 1)-edges. Most of the
technical work of the proof goes into proving the following lemma, which we will do below.

Lemma 17. Each removal of the form described above satisfies

1

2
·
∑

removed
1-agent v

# {(0, 1)-teams including v} ≤ z +
⌊w

4

⌋
+
x

2
. (3)

For the remaining regret, we apply the induction hypothesis to the strictly smaller ring
factorization on the remaining agents. The induction hypothesis guarantees a regret of

Regret of Sub-Factorization ≤ (n− (z + w))− (k − w) +

⌊
k − w

4

⌋
≤ n− k +

⌊
k

4

⌋
− z −

⌊w
4

⌋
.

Using the bounds from Lemma 17 and the induction hypothesis, we can now decompose and
bound the regret from Equation (2) as follows:

Regret = 1
2

∑
removed
1-agent v

# {(0, 1)-teams including v}+ Regret of Sub-Factorization− x

2

≤
(
z +

⌊w
4

⌋
+
x

2

)
+

(
n− k +

⌊
k

4

⌋
− z −

⌊w
4

⌋)
− x

2

= n− k +

⌊
k

4

⌋
.

26



This completes the proof of the induction step, and thus the theorem.

In the remainder of this section, we prove Lemma 17.

Proof of Lemma 17 We perform a detailed case analysis based on the time of the first
discovery of a successful edge. We always denote the successful edge by (a, b).

1. Discovery during phase 0:

Removing the endpoints of the discovered edge gives an intermediary stage of the sub-
factorization on n− 2 agents with (k − 2) 0-agents. In this case, we have z = 0, w = 2,
and x = 0. The removed 1-agents were incident to no (0, 1)-edges, so Equation (3) is
satisfied.

2. Discovery in round 4 of phase i (1 ≤ i < m
2 ):

We use the following diagram to represent the local area of the ring around the discov-
ered successful edge.

a b

1

i− 1 i− 1 i− 1

Here (and in all subsequent such diagrams), the edges represent pairs explored during
phase i. The bolded matching was the last one played, i.e., the one that resulted
in the 1-edge discovery. The top brackets indicate the presence of i − 1 columns of
agents between these matched columns. All of the missing agents in the labeled gaps
are deduced to be 0-agents by their proximity to the discovered 1-edge. Discovered
1-agents are black, deduced 0-agents are white, and unknown agents are gray (in the
later diagrams).

The algorithm removes the neighborhood of b; i.e., the i columns to the left of b (includ-
ing a) and the i columns to the right of b. Notice that it does not remove the columns
strictly to the left of a, even though they can be deduced to consist of 0-agents. Instead,
the algorithm can deduce that all the edges between these agents and the agents to the
right of b are unsuccessful, and can use this deduction to patch the gap in the ring.
This allows the algorithm to obtain an intermediary stage of a sub-factorization.

Both a and b had been paired with 4i 0-agents. The number of removed 0-agents is
z = 4i, and two 1-agents (a and b) are removed, so w = 2. x = 0 because no known
1-agents is retained. Substituting these values, we see that Equation (3) is satisfied.
Note that the same argument also handles the case where (a, b) is a diagonal edge in
our diagram, as can happen in round 4 in an odd cycle.

3. Discovery in round 3 of phase i (1 ≤ i < m
2 ):

There are 3 sub-cases to consider.
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(a) In the first sub-case, one endpoint (w.l.o.g. b) of the edge (a, b) had already been
connected to both vertices on the other side, while the other (a) had not. Let
c be the node on the other side that a had not been connected to, and assume
further that c was paired with the 0-agent in the same column as a in the previous
round. Note that this subcase handles discovery in any even cycle, and all but two
possible edge discoveries in an odd cycle. One such arrangement is shown below.

c a

b

1

i− 1 i− 1 i− 1

The algorithm plays the final matching as prescribed by Ring Factorization.
The edge between a and c will identify the type of c. If c is a 0-agent, we can
appeal to Case 2. Thus, we are left to handle the case in which c is a 1-agent. In
that case, let d and e be the agents in the column i+1 columns to the right of b in
the original ring. The algorithm removes the neighborhood of b. In the remaining
subgraph, the algorithm can deduce all unsuccessful edges needed to obtain a sub-
factorization, except for the edges (c, d) and (c, e). Thus, the algorithm needs to
do more work in the next round in order to “catch up” to the sub-factorization.
In the next round, the algorithm uses a and b to explore d and e (pairing up their
prescribed neighbors), while pairing up the remaining agents according to the sub-
factorization as shown below. In this figure, notice that the top and bottom parts
are “interleaved” — for example, the nodes d and e are i columns to the right of
c, and are the immediate left neighbors of the gray nodes shown above them and
slightly to the right.

h

c

f

d

e

g

i i i

i i

If both d and e are 0-agents, then the algorithm can deduce that (c, d), (c, e),
(f, d), and (e, g) are unsuccessful edges, and has caught up to an intermediary
stage of the ring factorization (forgetting about the explored (e, f) edge). In total,
a was paired with 4i 0-agents (all i + 2 neighbors except for b and c) and b was
paired with 4i + 1 0-agents (all 4i + 2 neighbors except a), while z = 4i, w = 2,
and x = 1, so Inequality (3) is satisfied.
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If one of d, e is a 1-agent (w.l.o.g. d; they cannot both be 1-agents), then all of the
i columns to the right of d, e consist of 0-agents. There are two further cases to
consider.

• If h is a 0-agent, then the algorithm can further remove the 2i + 1 columns
surrounding c. Each missing edge in the sub-factorization has one endpoint
that is known to be a 0-agent, so we can appeal to the inductive hypothesis.
Overall, c and d were each paired with 4i + 1 0-agents, and a and b were
paired with a total of 8i 0-agents. In addition, z = 8i, w = 4, and x = 0, so
Inequality (3) is satisfied.

• If h is a 1-agent, then the algorithm can remove i − 1 columns to the left of
h, as well as the i+ 2 columns between (and including) the columns of h and
c. Note that the missing edges in the sub-factorization each have an endpoint
that is a deduced 0-agent, so they can be added to obtain an intermediary
round of a smaller ring factorization. In all, c was paired with 4i 0-agents, h
was paired with (4i+ 1) 0-agents, and a and b were paired with a total of 8i
0-agents. In addition, z = 8i, w = 4, and x = 0, so Inequality (3) is satisfied.

(b) In the second sub-case, as in case (a), b had already been connected to both vertices
on the other side, while a had not. Different from case (a), we assume that c was
paired with an agent to its left in the previous round. This case cannot occur in
an even cycle, and can occur in exactly one place in an odd cycle. The diagram
for this case is shown below.

d c a

b

1

i− 1 i− 1 i− 1

If the edge (c, d) is unsuccessful, we can appeal to Case 3(a). Otherwise, the edge
(c, d) is successful, so d is identified as a 1-agent. The algorithm then removes
the neighborhoods of c and b. The i columns of 0-agents to the left of d allow
the algorithm to deduce all necessary 0-edges to obtain an intermediary state of
the sub-factorization. Each of the w = 4 removed 1-agents was paired with 4i− 1
0-agents, z = 8i− 2, and x = 0, so Inequality (3) is satisfied.

(c) In the third sub-case, neither a nor b had connected to both vertices on the other
side. This case cannot occur in an even cycle, and can occur in exactly one place
in an odd cycle. The diagram for this case is shown below.

c

a b d

1

i− 1 i− 1 i− 1
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In the last round, the algorithm plays the matching prescribed by Ring Factor-
ization. If both c and d are 0-agents, we can appeal to case 2 of the proof. If
exactly one of c, d is a 1-agent, we can appeal to Case 3(a). If both c and d are
1-agents, the algorithm removes the neighborhoods of a and d, and patches the
ring as in Case 2. a and b were each paired with 4i− 1 1-agents, and c and d were
paired with 4i 1-agents. In addition, z = 8i − 2, w = 4, and x = 0, so Inequality
(3) is satisfied.

4. Discovery in round 2 of phase i (1 ≤ i < m
2 ):

There are two sub-cases to consider.

(a) In the first sub-case, exactly one endpoint of the discovered successful edge (w.l.o.g. b)
was connected to a vertex on the other side. This subcase handles discovery in
any even cycle, and all but one possible edge discovery in an odd cycle. One such
arrangement is shown below.

a b

1

i− 1 i− 1 i− 1

The algorithm removes b’s column, along with the i columns to its left and the i−1
columns to its right. Note that the i− 1 columns of known 0-agents to the left of
a and the known 0-agent with whom b was paired in the first round of this phase
allow the algorithm to deduce all necessary 0-edges to obtain an intermediary stage
of the sub-factorization. a and b were each paired with 4i− 2 0-agents, z = 4i− 2,
w = 2, and x = 0, so Inequality (3) is satisfied.

(b) In this sub-case, both a and b had been connected to an agent on their other side.
This case cannot occur in an even cycle, and can occur in exactly one place in an
odd cycle. The diagram for this case is shown below.

a

b

1

i− 1 i− 1 i− 1

Again, the algorithm removes b’s column, along with the i columns to its left and
the i − 1 columns to its right. The i − 1 columns of 0-agents to the left of a,
along with the known 0-agents with whom a and b were paired in the first round
of this phase, allow the algorithm to deduce all necessary 0-edges to obtain an
intermediary stage of the sub-factorization. a and b were each paired with 4i− 2
0-agents, z = 4i− 2, w = 2, and x = 0, so Inequality (3) is satisfied.
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5. Discovery in round 1 of phase i (1 ≤ i < m
2 ): Our diagram is as follows; note that in

this case, we do not use a and b to denote the discovered successful edge:

a

b

c

d

1

i− 1 i− 1 i− 1

The algorithm begins by removing the column of the right 1-agent, as well as the i
columns to its left and the i − 1 columns to its right. At this point, the algorithm is
almost left with an intermediary stage of a sub-factorization; however, it cannot deduce
whether the edge (b, c) is successful (which is necessary to recover a sub-factorization).
To “catch up” to the sub-factorization, the algorithm does some exploration with the
removed 1-agents. In the second round, Ring Factorization prescribes a pairing of
(a, c) or (b, d).4 The algorithm uses the removed 1-agents to explore both endpoints
of this edge, while playing the rest of the matching according to the sub-factorization.
One possibility is shown below; by the footnote, it suffices w.l.o.g. to focus on this case.

e

a

b

c

d

f

i− 1 i− 1 i− 1

If b is a 0-agent, then the algorithm can deduce the missing edge (b, c), and is back at an
intermediary stage of the sub-factorization. The removed 1-agents were each matched
to at most 4i− 2 0-agents, z = 4i− 2, w = 2, and x ≥ 0, so Inequality (3) is satisfied.

Thus, it remains to handle cases in which b is a 1-agent. If the edge (c, f) is successful,
then the algorithm removes b’s column, along with the i columns to its right and i− 2
columns to its left. The originally removed 1-agents were paired with a total of 8i− 5
0-agents, b was paired with 4i − 2 0-agents, and c with 4i − 3 0-agents. In addition,
z = 8i − 6, w = 4, and x = 1, so Inequality (3) is satisfied. A similar procedure
handles the cases in which d is a 1-agent, or in which e’s edge in round 2 is successful.
If none of these cases arises, the algorithm proceeds with the next round, as shown in
the following diagram.

4In an even cycle, all round-2 edges are within the same ring. In an odd cycle, there will be one “diago-
nal” edge connecting nodes from different rings played in round 2. However, since the exploration graph is
rotationally symmetric after round 1, the algorithm is free to choose the location of this diagonal edge; in
particular, it places the edge between columns other than b’s and c’s.
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e

a

b

c

d

f

i− 1 i− 1 i− 1

If c is revealed to be a 0-agent, then the algorithm can deduce the missing edge (b, c) to
be unsuccessful, and is back at an intermediary stage of the sub-factorization. In this
case, the two originally removed 1-agents had been matched to a total of 8i−3 0-agents,
z = 4i− 2, w = 2, and x = 1, so Inequality (3) is satisfied. We are left to handle cases
where c is a 1-agent, implying that the i− 1 columns to its right only contain 0-agents.
Note that because we are in the case where the edge (c, f) was unsuccessful, this implies
that f was a 0-agent.

If e is a 0-agent (which is revealed by the edge with b), the algorithm removes b’s
column, along with the i − 1 columns to its left and the i columns to its right. The
known 0-agents to the right of c, along with e being a 0-agent, allow the algorithm to
infer all missing edges to be unsuccessful. The originally removed 1-agents had been
matched to a total of 8i − 4 0-agents, and b and c had each been matched to 4i − 2
0-agents. In addition, z = 8i− 4, w = 4, and x = 0, so Inequality (3) is satisfied.

Otherwise, e is a 1-agent. In this case, the algorithm removes e’s column, along with
the i−1 columns to its left and the i columns to its right. Because the i−1 columns to
the right of c, as well as the agent f , are known to be 0-agents, this allows the algorithm
to infer all missing edges to catch up with a sub-factorization. The originally removed
1-agents had been matched to a total of 8i− 4 0-agents, b was matched to 4i− 2 and e
to 4i− 1. In addition, z = 8i− 4, w = 4, and x = 1 (because c had been matched with
b), so Inequality (3) is again satisfied.

6. Discovery is made during phase m
2 (m even):

In this case, k = 2. Since no 1-agent is ever paired to the same 0-agent multiple times,
the total regret is at most 1

2 · k · (n− k) = n− k = n− k +
⌊
k
4

⌋
.

We have accounted for all possible scenarios where the first 1-edge is discovered. Therefore,
we have completed the proof of Lemma 17.
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C A Weakest Link Instance with Regret Exceeding n− k
We consider the instance of the weakest link (AND) model with n = 10 agents, k = 4 of whom
have high skill. We argue that any algorithm on this instance can be made to incur regret 7.
Note that this is strictly more regret than the n − k = 6 guaranteed by Theorem 6. It also
exactly matches the upper regret bound from Theorem 7. Hence, the Ring Factorization
with Repairs Algorithm is optimal for this instance.

Regardless of the actions of the algorithm in rounds 1–2, the adversary will reveal no (1, 1)-
teams. This is always possible since the exploration graph after round 2 is bipartite, so it
includes an independent set of size 5. Next, we describe the actions of the adversary in round
3. To do this, we consider the possible exploration graphs G(V,E3). By a computer search,
we determined that there are 102 non-isomorphic exploration graphs.

97 of these graphs have two (not necessarily disjoint) independent sets I1, I2 with |I1| =
|I2| = 4 and such that |I1∪ I2| is odd. The adversary can use I1 and I2 to force the algorithm
to incur regret at least 7. First, the existence of I1 and I2 allows the adversary to again
reveal no (1, 1)-pairs in round 3. At the end of round 3, the algorithm has accrued 6 units
of regret. Since I1 ∪ I2 has odd cardinality, any matching that the algorithm chooses must
include an edge connecting some agent in I1 ∪ I2 to an agent w /∈ I1 ∪ I2. However, this gives
the adversary a labeling that includes a (0, 1)-team in round 4, by making either all of I1 or
all of I2 have type 1, depending on which of the two has the edge to w. This (0, 1)-edge adds
at least one additional unit of regret. We draw these 97 graphs below, using red and blue
dots to depict I1 and I2.

In the remaining 5 graphs (the last 5 graphs shown below), either (i) there is no independent
set of size 4 or (ii) there is a matching such that for every independent set of size 4, each edge
in the matching either connects two agents in the independent set or two agents not in the
independent set. In either case, the adversary must reveal a (1, 1)-team in round 3, either to
ensure a consistent type assignment or to force total regret 7.

For each of these graphs, we programmatically verified the following:

1. Given any three matchings whose union is the depicted graph, each of the three match-
ings includes one of the blue edges (or the image of one of the bolded blue edges under
an automorphism of the graph).

2. By revealing the blue edge contained in the round-3 matching as a (1, 1)-edge, the
adversary can always either (i) ensure regret 2 in round 4 (so the regret in round 3
is one, and in round 4, it is two) or (ii) ensure regret 1 in round 4 and leave two
independent 2-sets I1, I2 in the unresolved subgraph such that |I1 ∪ I2| = 3 (so the
regret in each of rounds 3,4, and 5 is one).

Thus, the total regret in each of the cases is at least 7.

33



34



35



36



37


	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Agents, Types, and Teams
	2.2 Adversarial Types and Regret
	2.3 Symmetry Synergy Functions and Atomic Primitives

	3 Uniform and Diverse Teams
	3.1 Uniformity (EQ)
	3.2 Diversity (XOR)

	4 The Strongest Link Setting (OR)
	4.1 The MaxExploit with 4-Cliques Algorithm
	4.2 Majority High-Skill Regime
	4.3 Majority Low-Skill Regime

	5 The Weakest Link Setting (AND)
	5.1 The Ring Factorization with Repairs Algorithm

	6 Conclusion
	A Ring Factorization: Detailed Construction
	B Details of the Ring Factorization with Repairs Algorithm
	C A Weakest Link Instance with Regret Exceeding n-k

