Staggered Rollout Designs Enable Causal Inference without Graph Knowledge
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The Problem Staggered Rollout Experiment Design Experiments
= A company runs an experiment to estimate the effectiveness of a national ad Using a staggered rollout experiment design, we compensate for lack of net- = Configuration model network with in-degrees distributed as a power law
campaign work information by taking multiple outcome measurements. with exponent 2.5
= The Total Treatment Effect (TTE) estimand measures the change in the = Parameter r governs the strength of interference effects
average individual's behavior when everyone sees the ad versus when no Target treatment budget: 0.40 = Parameter p is the treatment budget
one does Treat 0% Treat 20% Treat 20% more = Compare against difference-in-means (ODM) and least-squares (LS) estimators
0 . . .
: e ’ ’ = Observation: Under a S-order potential outcomes model, our estimator Pl(p)
t's the r_ea\l thing. Coke. . . . . .
g‘ S NN ey s unbiased with lower variance than the other estimators
+ = Key Point: Our estimator uses no graph knowledge
» B=1,p=0.05r=1.25 » B =1,n=15000,p = 0.05
—o— Pl(p) —e— PlI(p)
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+ No one sees it ol L e e - I[_)Sl\;lNum wf e - E:”T\;lmum
\ Y } _O%‘; 0.25 - g —+-- DM(0.75) _O%‘; 0.25 - /, """"""" —+- DM(0.75)
Observe Y;(z) at each time step T R .
= Network Interference: \Word-of-mouth spreads advertiser's message "*;"4':-::-;--;-:LZ-ZZEQT.‘.Z.‘.T.‘.I.'.T.i.'..'.f.'.I.'.T. """"""
beyond direct viewers _
= |nterference violates the SUTVA assumption and introduces bias to classic Theoretical Results T S e e
estimators Consider the functon F(p) _ 7 [l n 1Y'(Z)] 2nd note: (a) Varying size of the population (b) Varying interference strength
z~Bern(p) " =k .
Formalizing the Problem - B =1,n=>5000,r =1.25 - n = 15000,p = 0.5,r = 1.25
O — —o— —o— P
TTE = F(1) — F(0) o o e DR
. | = [is a polynomial in p with degree < 8 o y . o
= Population: Directed graph on n . o . . 8 on] —e DM(0.75) B o “u e DMOT)
) = Computing the average of {Y;(z)}!, with z ~ Bern(p) gives an unbiased m i -
nodes, edges encode interference . PRI = — Ry p— . R — .
| estimate of F(p) 5 E N et
= Treatment: Indicated by z € {0,1}" . € s \\\,» -
= Outcomes: Yj(z) for each person i | R
= Edges may be unknown . . . . . ol
o ! T . ! A
TTE = o Z Y;’(l) — YL<O) (c) Varying treatment budget (d) Varying the model degree
i

%Zn(z)

Future Research Directions

Research Question
Average
outcome = Run experiments on real-world data
Can we design an unbiased TTE estimator under the assumptions listed below . Allow for time-varying effects or ime-varying networks
that has a reasonable bound on its variance?
- > = Bias-variance trade off results when 5 is unknown
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3. Bounded Effects: For each individual i, »  |e;.s| = O(1) - 28 References

SCN; IS an unbiased estimator for TTE with variance O(% : (ﬁ) )
S|<
We also have results for when... E E

4. Randomized Experiment Setting: Randomly assign some individuals to treat-
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ment, some 1o COﬂtFOL and observe their outcomes = Observations of YZ(Z) are perturbed by mean-0 independent Gaussian noise rollout designs enable causal inference under interference without
network knowledge. arXiv preprint arXiv:2205.14552, 2022.
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= z |5 obtained by uniformly sampling a subset of k£ individuals to treat
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