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Abstract

Randomized experiments are widely used to estimate causal effects across a variety of do-
mains. However, classical causal inference approaches rely on critical independence assumptions
that are violated by network interference, when the treatment of one individual influences the
outcomes of others. All existing approaches require at least approximate knowledge of the net-
work, which may be unavailable and costly to collect. We consider the task of estimating the
total treatment effect (TTE), or the average difference between the outcomes when the whole
population is treated versus when the whole population is untreated. By leveraging a staggered
rollout design, in which treatment is incrementally given to random subsets of individuals, we
derive unbiased estimators for TTE that do not rely on any prior structural knowledge of the
network, as long as the network interference effects are constrained to low-degree interactions
among neighbors of an individual. We derive bounds on the variance of the estimators, and
we show in experiments that our estimator performs well against baselines on simulated data.
Central to our theoretical contribution is a connection between staggered rollout observations
and polynomial extrapolation.

1 Introduction

A cornerstone of much of the classic causal inference literature is the stable unit treatment value
assumption (SUTVA), which posits that an individual’s potential outcome is a function only of their
assigned treatment; there are no spillover effects due to the treatment of others. Such an assumption
fails to account for the ways in which individuals interact in many real-world experimental settings.
For instance, new features rolled out on social networking sites such as LinkedIn may alter these
users’ behaviors, which in turn affect how their connections (who do not have access to the feature)
interact with the platform. Individuals receiving a vaccine against an infectious disease may reduce
the transmission probability of the disease to others they interact with. Implementing a different
pricing policy for a subset of individuals in an online marketplace such as Airbnb or a platform such
as Uber could impact the experience of other users, as they compete for the same resources or same
customers. Public health measures instituted in one city can limit travel to nearby communities,
indirectly affecting their health outcomes or transit related outcomes. These examples illustrate
how network interference may arise naturally from the connectedness of our society. Unfortunately,
the standard causal inference techniques which do not account for network interference may result
in arbitrarily biased estimates.

As these issues come into greater focus, there is a growing research area in developing new tools for
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causal inference under network interference, when the outcome of an individual can be affected by
the treatment of another. Many approaches either propose complex graph-based cluster randomized
designs, or require strong parametric assumptions on the network interference effects. A limitation
is that all these approaches require at least partial knowledge of the underlying network in order to
implement the randomization or to compute the estimator. While structural knowledge is available
to online social networks, other applications such as public health must reason about an unknown or
potentially transient network. The additional effort required to collect or model network structure
is both difficult and costly.

In this work, we explore the value of additional measurements which arise from a staggered rollout
randomized design, in which the treatments are administered over a span of a few timepoints. For
example, the experimentation team at LinkedIn may roll out an experiment over 5 days, increasing
the fraction of treated individuals according to a schedule of 1%, 2%, 5%, 10%, 20%, where it
continuously collects data and measurements before and during each day of the experiment. Not
only is this type of experiment easy to implement in such applications, it is often desirable to
implement treatments according to such a staggered rollout design as it allows the system to
first ensure safety of the proposed treatment on a smaller test group before implementing it on
larger groups. This type of experimental design is also common for trials involving healthcare and
medicine due to the requirement of certain safety considerations before testing for efficacy. A key
contribution in our work is that we show the additional measurements from a staggered rollout
design enable graph agnostic causal inference, lifting all requirements on knowledge of the network.

We focus on estimating the total treatment effect (TTE), informally defined as the difference in
average outcomes across the population between two scenarios: when all individuals are treated
and when no individuals are treated. It has also been referred to as the global average treatment
effect (GATE). The TTE is particularly pertinent to applications where the decision maker must
choose between entirely adopting the new treatment or remaining with the status quo. For example,
LinkedIn would like to choose a single news feed recommendation algorithm, and Airbnb and Uber
would like to choose a single dynamic pricing algorithm. We assume neighborhood interference,
where each individual is only affected by the treatments of its direct neighbors; this is only mildly
restrictive as the neighborhood can be defined with respect to an unknown network, which is neither
used for the estimator nor the randomized design.

Related Work. In addressing the challenges that arise from network interference, a key tension
arises between the model assumptions and the simplicity and efficiency of the proposed estimator.
Previously proposed model assumptions can be generally classified into assumptions on exposure
functions [1, 2, 12, 14, 24], interference neighborhoods [3, 5, 18, 22], parametric structure [4, 6, 8,
9, 20], or a combination of these. Each of these assumptions lead to different solution concepts. All
of these approaches rely on knowledge of the network mediating the interference effects.

One class of approaches relies on assumptions about the network structure. They assume partial
interference, meaning that the population can be partitioned into disjoint groups, such that all
network interference effects can only occur within but not across the pre-specified groups [2, 5,
10, 13, 16, 17, 19, 23]. This assumption is motivated by scenarios where the network is naturally
strongly clustered. A natural solution is to randomize treatments over the groups jointly, such that
each group is assigned to be either fully treated or fully control. A drawback of this approach is
that many networks are well-connected such that there is no clear clustering of the network which
does not cut a significant fraction of the edges. The bias of standard estimators will scale with the
number of edges that cross between groups, leading to proposed cluster randomized designs that
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randomize over clusters that are constructed to minimize the number of edges between clusters [8, 9].
Constructing good clusters itself can be computationally intensive. Additionally some applications
may prohibit such nonuniform treatment assignment probabilities due to fairness considerations.
Under neighborhood interference assumptions, [21, 22] analyze the Horvitz-Thompson estimator
alongside a cluster randomized design, which involves both clustering the graph and computing
probabilities of entire neighborhoods being assigned to treatment or control over the distribution
of clusterings, which is computationally intensive. When one is willing to impose a distributional
model on the network itself, [11] provides central limit theorem convergence results for a related
but weaker estimand measuring the change in outcomes under small perturbations of the fraction
of treated individuals.

An alternate approach is to impose structure on the form of the network interference effects. The
most common assumption is that the network effects are linear with respect to a specified statistic
of the local neighborhood [4, 6, 7, 9, 15, 20]. The assumptions reduce the number of unknown
parameters in the model to a fixed dimension that does not grow with the population size, reducing
the inference task to linear regression. As a result, the natural solution is to use a least squares
estimate, shifting the focus to constructing randomized designs that minimize the variance of the
estimate. A limitation of this approach is that it requires the correct choice of the the statistic
governing the linearity, and it requires precise knowledge of the network structure to compute these
neighborhood statistics. Furthermore, it assumes knowledge of the relevant covariate types that
differentiate individual responses, or otherwise assumes homogeneity in the network effects.

The most similar work to our paper is the solution proposed in [25], which provides an estimator
for the TTE under a heterogeneous linear interference model [8], also referred to as the joint
assumptions of additivity of main effects and interference effects in [18]. Their estimator does
not require knowledge of the network, but requires measurements over two time steps. Our work
generalizes their results beyond linear to polynomial models, and we show that the staggered
rollout experimental design enables graph agnostic causal inference. The extension from linear to
polynomial models introduces the possibility of non-trivial interactions within the neighborhood
set, adding complexity to the model that necessitates a new analysis and algorithm.

Contributions. We show that under a staggered rollout experimental design, the task of esti-
mating the total treatment effect reduces to polynomial extrapolation, where the degree of the
polynomial is governed by the cardinality of interactions in the neighborhood interference model,
bounded above by the degree of the graph. Our approach is the first in the literature to propose
an estimator and randomized design that does not require any knowledge of the network structure,
and yet is unbiased and consistent. We provide variance bounds on the estimator, showing that
the variance only grows polynomially in the degree as opposed to the exponential growth that
is exhibited in the Horvitz-Thompson estimator under simple Bernoulli randomized designs. We
provide experiments that also illustrate that naively using regression models without allowing for
heterogeneity could lead to significant bias, whereas our estimator is unbiased with significantly
lower variance than the bias incurred due to a misspecified model. We are also the first to study
the value of a staggered rollout experimental design in the presence of network interference, and
we believe the overall framework could extend beyond polynomial models to other function classes,
opening a new approach for handling network interference while allowing for flexible heterogeneity
in the network effects.
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2 Setup

Consider a population of n individuals, and assume that the network interference can be represented
via an unknown directed graph with edge set E ⊂ [n] × [n]. An edge (j, i) ∈ E represents that
individual i is affected by the treatment assignment of individual j; as such, self-loops are expected.
The in-neighborhood of individual i is denoted by Ni = {j ∈ [n] : (j, i) ∈ E}, and we let din denote
the maximum in-degree, dout the maximum out-degree, and d = max{din, dout}. We posit that
the outcome of individual i as a function of the entire population’s exposure to treatment can be
expressed by the potential outcomes function Yi : {0, 1}n → R.

Our task is to estimate the total treatment effect (TTE), which represents the difference in average
outcomes when the entire population is fully under treatment as opposed to fully under control,
denoted as

TTE := 1
n

∑n
i=1

(
Yi(1)− Yi(0)

)
. (1)

We use z ∈ {0, 1}n to denote the treatment assignment vector, where zi = 1 if individual i is
assigned to treatment, and zi = 0 if i is assigned to control. By definition of E, it follows that the
potential outcomes functions satisfy neighborhood interference with respect to the graph defined
by E.

Assumption 1 (Neighborhood Interference). Yi(z) only depends on the treatment of individuals
in Ni (including i). Equivalently, Yi(z) = Yi(z

′) for any z and z′ such that zj = z′j for all j ∈ Ni.
Additionally, as the treatment variables zi are binary, any potential outcomes function satisfying
neighborhood interference can be written as a polynomial in the neighborhood treatment variables:

Yi(z) =
∑
S⊆Ni

aS
∏
j∈S

zj
∏

j′∈Ni\S

(1− zj′),

for some coefficients {aS}. We use the degree of the polynomial to quantify the complexity of the
model. In full generality, any model satisfying the neighborhood interference assumption will have
polynomial degree bounded by maxi |Ni|, the maximum in-degree of the graph. In this work we
consider the scenario where the polynomial degree may be significantly smaller than maxi |Ni|.
Assumption 2 (Low Polynomial Degree). The potential outcomes model has polynomial degree at
most β, i.e. there exist coefficients {ci,S}i∈[n],S⊆[n] such that for all i and z,

Yi(z) =
∑

S⊆Ni,|S|≤β

ci,S · I
(
S treated

)
=

∑
S⊆Ni,|S|≤β

ci,S
∏
j∈S

zj . (2)

The low-degree polynomial structure is perhaps better conceptualized as a constraint on the order
of interactions among neighbors of an individual, as the potential outcomes function is polynomial
with respect to the binary treatment vector. For general β, this assumption is not restrictive at all;
rather, a restriction is imposed by assuming a specific value for β, or more generally assuming that
β is much smaller than the graph degree. We interpret the parameter ci,S as the effect that treating
all individuals in S has on the outcome of individual i. The coefficient ci,∅ represents individual i’s
outcome when everyone is assigned to control (i.e. their baseline outcome); this is unaffected by
the treatment assignment. In the case of a singleton set S = {j}, we use the shorthand notation
cij := ci,{j}. It follows that the total treatment effect is the sum of all ci,S for nonempty subsets S,

i.e. TTE = 1
n

∑n
i=1

∑
S⊆Ni

1≤|S|≤β
ci,S .
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The number of unknown parameters in this model are
∑

i∈[n]

∑β
k=0

(|Ni|
k

)
, which scales as ndβ.

When β = 1, the network effects resulting from treated neighbors is additive, and is also equivalent
to the heterogeneous linear outcomes model in [25]. This low degree assumption will not generally
admit threshold models or saturation models, both of which would require the degree of Yi to be
|Ni|.
An example in which the polynomial degree may be smaller than the neighborhood size would be a
setting in which an individual’s neighborhood can be further partitioned into smaller subcommuni-
ties: colleagues, university friends, high school friends, family, etc. Each subcommunity could have
an additive affect on the individuals’ outcome, but there may be nontrivial interactions among the
treatments of individuals in the subcommunities. The polynomial degree would be bounded by the
size of the largest subcommunity, which could be significantly smaller than the full neighborhood.
As another example, suppose that a social platform is testing a ”hangout room” feature that pro-
vides groups of up to 5 people a new environment to engage on the platform. One could posit a
model with β = 5, as the change in any individual’s usage on the platform can be attributed to
experience with the new feature, which takes place in groups of up to 5 users.

We let Ymax denote an upper bound on the absolute treatment effects for each individual, i.e.

Ymax := max
i∈[n]

∑
S⊆Ni,|S|≤β |ci,S |.

It follows that the magnitude of the outcomes Yi(z) are bounded by Ymax for any treatment vector z.
We let Lj denote the absolute effect or influence that individual j has on the population outcomes,

Lj :=
∑

i:j∈Ni
∑
S⊆Ni,|S|≤β,j∈S |ci,S |.

Our boundedness assumption and the finiteness of our network imply the boundedness of the Lj . We
denote the upper bound on the absolute effect or influence of any individual by Lmax := maxj

{
Lj
}

.

Randomized Experiment Design. As it may be costly and/or detrimental to expose the en-
tire population to treatment, we wish to estimate the total treatment effect after treating only a
small random subset of individuals. In particular we assume that there may be an experimental
budget that limits the proportion of individuals who may be treated. We will focus on two stan-
dard randomized designs. In Bernoulli design, a treatment vector z is obtained by independently
sampling each coordinate from a Bernoulli(p) distribution, so that the probability that a subset of
individuals S are all treated is p|S|. We assume that p > 1

n so that at least one individual is treated
in expectation. In completely randomized design, a treatment vector z is obtained by uniformly
sampling a subset of k individuals to treat for some fixed k. Here, the probability that a subset of
individuals S are all treated is

|S|−1∏
i=0

k − i
n− i =:

[
k
n

]|S|
. (3)

Throughout the paper, we utilize a staggered rollout experimental design. Treatment is assigned
to individuals in T stages throughout the experiment. Overall, the individuals’ outcomes are
measured T + 1 times: a baseline measurement before treatment, as well as a measurement after
each treatment round. We’ll use zt to denote the vector of treatment assignment in round t,
and assume that each entry zti is monotone increasing with t (individuals cannot be un-treated).
This monotonicity requirement introduces significant correlation between the treatment vectors.
Monotonicity is a constraint in many real-world scenarios where the experimental designer only

5



has the option to introduce treatment to new individuals. For example, treatments in medication
trials can have life-altering, irreversible effects, and the exposure of individuals to an advertising
campaign cannot be “taken back.” In other domains, such as the rollout of new interfaces on social
media platforms, treatments are temporary or reversible and it may make sense to remove the
monotonicity requirement.

Another assumption we make is that observations of outcomes are perturbed by iid Gaussian noise.

Assumption 3. We observe Y obs
i,t = Yi(z

t) + εi,t for εi,t
iid∼ N(0, σ2).

3 Graph Agnostic Estimators under Staggered Rollout Design

To motivate the design of our estimators, we begin with a high-level view of estimating the total
treatment effect. We limit our attention to static networks. When we have no information about
the underlying causal network, we do not know how much of each individual’s neighborhood is
treated, so have no systematic way to predict what their potential outcome would be if the entire
population were treated. However, we can aggregate the average of the individuals’ outcomes to
obtain a meaningful statistic. In the following discussion we omit observation noise to make the
intuition for our estimator clear. Consider the expected population average outcomes where the
expectation is taken over the distribution of treatment vectors z sampled from a parameterized
class of distributions Dx, where D0 refers to the distribution that deterministically assigns all
individuals to control, and D1 refers to the distribution that deterministically assigns all individuals
to treatment. Consider the underlying expected outcome function FD : [0, 1]→ R given by

FD(x) = E
[

1
n

∑n
i=1 Yi(z)

]
where the expectation is taken over the distribution of treatment vectors z ∼ Dx. By construction,
the TTE is exactly FD(1)− FD(0).

If we can implement a staggered rollout design where at stage t of the experiment, the marginal
distribution of the treatment vector is Dxt , the observed average outcomes collected in the experi-
ment at stage t would give noisy estimates of FD(xt). Under this framing, our goal is to use these
measurements to extrapolate the value of FD(1). This provides a general framework for utilizing
staggered rollout design to simplify estimation of the total treatment effect.

The simplest class of distributions we can consider is the Bernoulli(p) randomized design, in which
each individual is independently assigned to treatment or control with probability p. For a degree-β
polynomial potential outcomes model, the expected outcome function under this design is polyno-
mial in the treatment probability p:

FB(p) = E
[ 1

n

n∑
i=1

Yi(z)
]

=
1

n

n∑
i=1

∑
S⊆Ni
|S|≤β

ci,S · E
[∏
j∈S

zj

]
=

1

n

n∑
i=1

∑
S⊆Ni
|S|≤β

ci,S · p|S|.

To implement a staggered rollout Bernoulli design with treatment probabilities p1 < p2 < . . . < pT
we independently sample ui ∼ U [0, 1] for each individual i. Then, for each t ∈ [T ], we define
treatment vector zt with zti = I

(
ui ≤ pt

)
. This both ensures that the marginal distribution of

the treatment vector at stage t is equivalent to the Bernoulli(pt) randomized design, and that the
treatment assignments are monotone over the rounds.
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Alternatively, we can consider a completely randomized design (CRD) in which we fix a number
of treated individuals k, and sample a subset of k individuals uniformly at random among all size
k subsets in the population. For a degree-β polynomial potential outcomes model, the expected
outcome function under this design is polynomial in the treated fraction k/n:

FC( kn) = E
[ 1

n

n∑
i=1

Yi(z)
]

=
1

n

n∑
i=1

∑
S⊆Ni
|S|≤β

ci,S · E
[∏
j∈S

zj

]
=

1

n

n∑
i=1

∑
S⊆Ni
|S|≤β

ci,S ·
[
k
n

]|S|
.

To implement a complete staggered rollout design, we sample a treatment vector from CRD(k1)
at stage 1, and at stage t > 1, we sample a treatment vector from CRD(kt − kt−1) out of the
remaining untreated individuals. The marginal distribution of the treatment vector at state t will
be equivalent to the completely randomized design with parameter kt.

To construct our estimators, we will make use of the Lagrange interpolation formula.

Definition 1 (Lagrange Interpolation). Given a dataset
{

(xt, yt)
}T
t=0

with distinct x-coordinates,
the unique polynomial F of degree at most T with F (xt) = yt for each t is given by

F (x) =
T∑
t=0

`t,x(x) · yt, `t,x(x) =
T∏
s=0
s6=t

x− xs
xt − xs

.

To estimate TTE, we require estimates of FB(x) or FC(x) at x ∈ [0, 1]. As both FB and FC
have degree at most β, they can be recovered from β + 1 observations, requiring T = β rounds
of treatment. Given treatment targets x = (x0, x1, . . . xT ) with realized treatment schedule {zt ∼
Dxt}, we can utilize Lagrange interpolation to derive the following polynomial interpolation (PI)
estimator:

T̂TEPI(x) :=

{∑T
t=0

(
`t,x(1)− `t,x(0)

)(
1
n

∑n
i=1 Y

obs
i,t

)
x0 < x1 < . . . < xT ,

0 xt = xt−1 for some t ∈ [T ].
(4)

The separation into cases ensures that the Lagrange coefficients are well-defined. We assume that
the degree β is known such that the experimenter can select T = β. We also assume that x
is monotone, and define ∆x = mint=1..m

{
xt − xt−1

}
. We can apply this estimator in both the

Bernoulli and completely randomized design settings.

3.1 Theoretical Results and Discussion

For a potential outcomes model with degree β, we let the notation BRD(p) refer to a staggered
rollout Bernoulli design with distinct treatment probabilities p = (p0, p1, . . . , pβ). We let CRD(k)
refer to a staggered rollout completely randomized design with distinct treatment counts k =
(k0, k1, . . . , kβ).

Theorem 2. Consider a potential outcomes model with degree β. Under a BRD(p) with p0 = 0,

the estimator T̂TEPI(p) is unbiased with variance

O
(
d2β2

n Y 2
max∆−2β

p + σ2β
n ∆−2β

p

)
.
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Theorem 3. Consider a potential outcomes model with degree β. Under a CRD(k) with k0 = 0,

the TTE estimator T̂TEPI(k/n) is unbiased with variance

O
(
β2 Y 2

max

(
d2

n + β2

k1

)
·
(
n

∆k

)2β
+
σ2β

n

(
n

∆k

)2β)
.

Proofs of both of these theorems are given in Appendix A. Notably, families of networks with
d = o(log n) have variance asymptotically approaching 0. As such, our results can generally handle
sparse networks. A key technical piece of the analysis is handling the strong correlation in the
observations across measurements due to the monotonicity enforced by the staggered rollout design.
In the case of a linear potential outcomes model, we can strengthen both of these variance bounds,
which match the results from [25], differing only in an additive term coming from observation noise.

Corollary 4. For a linear potential outcomes model:

• The estimator T̂TEPI(p) under BRD(0, p) has variance at most 1−p
np · L2

max + 2σ2

np2
.

• The estimator T̂TEPI(k/n) under CRD(0, k) has variance at most n−k
(n−1)k · L2

max + 2σ2n
k2

.

Observe that the Bernoulli estimator does not incorporate any information about the realized
treatments. Notably, it does not account for the number of treated individuals. While this binomial
random variable concentrates around its mean (especially for large values of n), it fails to account for
significant deviations from this mean. Since this information is available at the time of estimation,
it can be incorporated into an estimator. We let k̂ = (k̂0 = 0, k̂1, . . . , k̂β) be the realized number of

treated individuals at each time step, and consider the estimator T̂TEPI(k̂/n).

Theorem 5. Consider a potential outcomes model with degree β. Under a staggered rollout
Bernoulli design with treatment probabilities p = (p0 = 0, . . . , pβ), T̂TEPI(k̂/n) has bias decay-

ing exponentially in n and variance O
(
β2 Y 2

max

(
d2

n + β2

p1n

)
·∆−2β

p + βσ2

n ∆−2β
p

)
.

A proof is given in Appendix A. For large n, the performance of these three estimators will converge
to each other. While our theoretical variance bound in Theorem 5 does not show improvement upon
that from Theorem 2, our experimental results illustrate empirical improvements of this estimator.

Discussion. Our results illustrate a natural relationship between the complexity of the model (i.e.
its degree β) and the complexity of the randomized design and corresponding estimator; we require
T ≥ β, i.e. β + 1 outcome measurements, in order to construct an unbiased estimator. Intuitively,
each of these measurements allows us to quantify one “degree” of the network effects. Given an
overall treatment budget p = pT with a uniform treatment schedule where pt = tp/T , the difference
between treatment fractions is ∆p = p/T . As a result, for our setting in which T = β, the variance
scales as (β/p)2β, where β is always bounded above by the size of the neighborhood, i.e. graph
degree. In comparison, under a fully general neighborhood model, the Horvitz-Thompson estimator
has a variance that scales as O(1/npd), where d denotes the size of the largest neighborhood.

A practical question, critical to real-world experimental settings, is how one should determine the
degree β if it is not known in advance. Even if we have many measurements, it may not always be
wise to increase the degree of the interpolant, as this increases the magnitude of its slope outside
of the interpolating region [0, p]. When the expected number of treated individuals np is small
relative to the population size n (so p� 1), the value of the interpolant at 1 will be highly sensitive
to any deviation of the later measurements from their expectation. On the other hand, choosing
to fit a low degree polynomial may lead to bias if the underlying network effects exhibit higher
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order interactions. The study of the sensitivity of polynomial interpolation estimators under model
misspecification in our randomized experiment setting is a captivating direction for future work.
In heuristic settings we recommend choosing a conservative β erring on lower values, as is also
common practice when using polynomial regression in supervised learning settings.

The low polynomial structure is primarily used to show that the expected total outcomes function
FD is a low degree polynomial of the treatment fraction. As FD represents an expectation taken
over the population, where treatments are assigned uniformly at random, it is plausible that this
function varies in a smooth and simple way when the treatment level is changed. While the
polynomial class is not the only hierarchy of function classes to capture complexity, it is a fairly
natural one. However, continued study of this overall approach of interpolation for staggered
rollout designs for other function classes beyond polynomial would also be incredibly interesting
and relevant.

In this work, we also limit our attention to static network effects, but extensions to incorporate
time-varying network effects or even time-varying network structures is an interesting direction
for future work. When the total treatment budget pT is small, such that a significant number of
individuals are observed under the baseline outcomes across all stages of the experiment, then we
could handle time-fixed effects via a simple modification of our estimator by using these baseline
individuals to estimate the time-fixed effects and subtracting them from the current estimator.

4 Experiments

We provide simulations on synthetic data to illustrate the performance of our estimators relative
to existing estimators. For a population of n individuals, we generate random directed networks
of n nodes using a configuration model with in-degrees distributed as a power law with exponent
2.5, and out-degrees evenly shared among individuals. For degree β, we construct the following
potential outcomes model:

Yi(z) = ci,∅ +
∑
j∈Ni

c̃ijzj +

β∑
`=2

(∑
j∈Ni c̃ijzj∑
j∈Ni c̃ij

)`
, (5)

where ci,∅ ∼ U [0, 1], c̃ii ∼ U [0, 1], and for i 6= j, c̃ij = vj |Ni|/
∑

k:(k,j)∈E |Nk| for vj ∼ U [0, r], where
r denotes a hyperparameter that governs the relative magnitude of the network effects relative
to the direct effects. Essentially vj represents the magnitude of individual j’s influence, which is
then shared among its out-neighbors proportional to their in-degrees. For simplicity we assume no
observation noise in the experiments, i.e. σ = 0.

Other Algorithms. We benchmark our proposed estimators against least squares regression and
difference-in-mean estimators. As these estimators don’t utilized the staggered rollout design, we
evaluate them on the measurements taken at the last stage, T , of the experiment. We will use z to
denote the treatment vector at time T (suppressing the superscript). As a network sampled from
a configuration model does not exhibit clustering, the solutions that propose cluster randomized
designs perform poorly, and thus we omit them from the experiments.

The standard difference in means estimator is the difference between the average outcome of indi-
viduals assigned to treatment and the average outcome of individuals assigned to control, given by
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T̂TEDM =

∑
i∈[n] ziYi(z)∑

i∈[n] zi
−
∑

i∈[n](1− zi)Yi(z)∑
i∈[n](1− zi)

. (6)

This estimator is biased under the presence of network interference. Note that T̂TEDM does not
take into account any information about each individual’s neighborhood.

A modification of the difference in means estimator incorporates knowledge of the number of treated
neighbors of each individual. Let Ui denote the number of individuals in Ni \ {i} assigned to
treatment, and let Ũi denote the number of neighbors individuals in Ni \ {i} assigned to control.
This estimator is given by

T̂TEDM(λ) =

∑
i∈[n] ziI(Ui ≥ λ)Yi(z)∑

i∈[n] ziI(Ui ≥ λ)
−
∑

i∈[n](1− zi)I(Ũi ≥ λ)Yi(z)∑
i∈[n](1− zi)I(Ũi ≥ λ)

, (7)

for some user-defined tolerance λ ∈ [0, 1]. This estimator only counts an individual’s outcome if at
least λ of the individual’s neighborhood is assigned to the same treatment as the individual itself.
In our experiments, we set λ = 0.75.

Finally we compare against least squares regression models of degree β, which posit that the
potential outcomes model can be described as

Yi(z) = g(zi, z̄i) =
(
ρ+

∑β
k=1 γkX

k
i

)
+ zi

(
ρ̃+

∑β−1
k=1 γ̃kX

k
i

)
, (8)

for some covariate Xi. In the two variations we consider, we set Xi equal to either the number
of treated neighbors or the proportion of treated neighbors, where we do not include i itself. The
two sets of coefficients (ρ, γ1, . . . γβ) and (ρ, γ̃1, . . . γ̃β) allow for the model to be different when
i is treated vs not treated, and the second summation only goes until β − 1 since we want to
only allow degree β interactions. The total number of coefficients in the model is 2β + 1. Least
squares regression finds the set of coefficients that minimizes the least squares predictive error on
the dataset, which consists of {zi, Xi, Yi(z)}i∈[n]. The estimated coefficients define an estimate for
the function ĝ. For the variation which uses the number of treated neighbors as the covariates,
setting Xi = Ui, the estimate is given by

T̂TELS-Num = 1
n

∑n
i=1(ĝ(1, |Ni| − 1)− ĝ(0, 0)). (9)

For the variation which uses the proportion of treated neighbors as the covariates, setting Xi =
Ui/(|Ni| − 1), the estimate is given by

T̂TELS-Prop = 1
n

∑n
i=1(ĝ(1, 1)− ĝ(0, 0)). (10)

As completely randomized design is more balanced than Bernoulli randomized design, we evaluate
all the benchmark algorithms under a completely randomized design.

Results and Discussion. For each population size n, we sample G networks from the distri-
bution described above. For each configuration of parameters in the experiment, we sample N
treatment schedules {z0, . . . , zβ} from our parameterized distribution class (Bernoulli or CRD)
compute the TTE using each estimator. For each estimator, we plot the relative bias of the TTE
estimates averaged over the results from these GN samples and normalized by the magnitude of
the TTE. The width of the shading in the figures depicts the standard deviation across the GN

10
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(c) Varying treatment budget
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(d) Varying the model degree

Figure 1: Four graphs visualizing the performance of various TTE estimators as various parameters
are adjusted. The height of each graph depicts the experimental relative bias of the estimator and
the shaded width depicts the experimental standard deviation.

estimates. We ran all experiments on a Linux-based machine with 20 CPU(s) and 10 cores. The
experiments for the linear setting took 8.3 minutes and the experiments with varying polynomial
degree took 4.6 minutes.

In Figure 1, we visualize the effect of four network/estimator parameters on the quality of each of
the five TTE estimators (the four described above, and our CRD estimator with treatment targets
kt = tk

β ). Specifically, we consider the effects of the population size (n), the maximum proportion
of treated individuals (k/n), the degree of the potential outcomes model (β), and the ratio between
the network and direct effects (r). Each of the plots fixes three of these parameters and varies the
fourth. Specific settings of the parameters are listed on each plot.

In Figure 1, our estimator (in blue) is unbiased as expected and the variance decreases as n and
k/n increases. However, the other estimators remain significantly biased, with higher variances
than ours, regardless of treatment budget or population size. As the ratio r increases the network
effects become more significant relative to the direct effect, and thus the bias of other estimators
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Figure 2: Two graphs visualizing the performance of our proposed TTE estimators as the size
of the population (n) or treatment budget (k/n) is varied. The height of each graph depicts the
experimental relative bias of the estimator and the shaded width depicts the experimental standard
deviation. The blue and the green plots essentially overlap.

also increases. As a sanity check, when the ratio is close to 0, all estimators are unbiased as there
are no network effects.

In Figure 2, we compare the variants of our estimator, evaluating T̂TEPI(k/n) under CRD and

evaluating T̂TEPI(p) and T̂TEPI(k̂/n) under Bernoulli(p) randomized design, where pt = tp/β

and k̂ is the vector of realized treatment counts. The estimators T̂TEPI(k/n) and T̂TEPI(k̂/n)

perform nearly identically. T̂TEPI(k̂/n) has lower variance than T̂TEPI(p), which is intuitive as
it performs polynomial interpolation on the realized treatment fraction rather than the expected
treatment fraction. We include additional experiments for higher degree models in Appendix C.

An additional point of comparison for these estimators is their computational complexity. Here,
the most natural comparison is between our estimators and least squares, as these are the only
approaches that make use of the various rounds of outcome measurements. Since our estimators
require only an aggregated measurement of the individual’s outcomes, the O(β2) runtime of the
interpolation is asymptotically dominated by the O(nβ) time to read in the outcome measurements.
The least squares methods fit O(β) parameters and have time complexity O(β2n).

5 Conclusion

We propose a new approach for causal inference under network interference which performs signifi-
cantly better than existing approaches without requiring knowledge of the graph. In particular, the
additional measurements from a staggered rollout design enable us to reduce the task of estimating
total treatment effect to that of polynomial interpolation. We show that under a flexible class
of low degree polynomial potential outcomes our estimator is unbiased with variance scaling as
O(1/n). Future directions include how to optimally perform model selection when β is unknown,
and generalizing to a dynamic setting by incorporating time-dependent noise to the model, con-
sidering time-varying effects, or allowing for time-varying networks. The staggered rollout design
framework has implications towards estimation under other model classes beyond polynomial, such
as sublinear or monotone functions, under which one may be able to construct bounds on TTE.

12



Acknowledgements

We gratefully acknowledge financial support from the National Science Foundation grants CCF-
1948256 and CNS-1955997 and the Sloan Foundation grant 90855. Dr. Yu is also supported by an
Intel Rising Stars award and a JPMorgan Faculty Research award. Mayleen is also supported by
the National Science Foundation Graduate Research Fellowship Program.

References

[1] Peter M Aronow, Cyrus Samii, et al. Estimating average causal effects under general inter-
ference, with application to a social network experiment. The Annals of Applied Statistics, 11
(4):1912–1947, 2017.

[2] Eric Auerbach and Max Tabord-Meehan. The local approach to causal inference under network
interference. arXiv preprint arXiv:2105.03810, 2021.
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A Variance Calculations

In this section, we establish the unbiasedness and variance bounds of the estimators introduced
throughout the paper. The following lemma will be useful for some of these calculations.

Lemma 6. Suppose we have Y obs
i,t = Yi(z

t) + εi,t for iid noise εi,t ∼ N(0, σ2) and our estimator
has the form

T̂TE =
1

n

β∑
t=0

n∑
i=1

αi,t · Y obs
i,t ,

with each |αi,t| = O(α). Further suppose that for any t, t′ ∈ 0, . . . , β and two subsets S,S ′ of
cardinality at most β, ∣∣∣∣Cov

[∏
j∈S

ztj ,
∏
j′∈S′

zt
′
j′

]∣∣∣∣ ≤
{
B1 S ∩ S ′ 6= ∅,
B2 S ∩ S ′ = ∅.

Then,

Var
[
T̂TE

]
= O

(
α2β2Y 2

max

(
d2

n max{B1, B2}+B2

)
+ σ2β

n α2

)
.

Proof. By the law of total variance, we have

Var
[
T̂TE

]
= Var

[
E
[
T̂TE

∣∣∣ zt
]]

+ E
[
Var

[
T̂TE

∣∣∣ zt
]]

= Var
[

1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt)
]

+ E

[
Var

(
1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt) + 1
n

β∑
t=0

n∑
i=1

αi,t · εi,t
∣∣∣ zt

)]

= Var
[

1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt)
]

+ E

[
Var

(
1
n

β∑
t=0

n∑
i=1

αi,t · εi,t
)]

= Var
[

1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt)
]

+ E

[
1
n2

β∑
t=0

n∑
i=1

Var(αi,t · εi,t)
]

= Var
[

1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt)
]

+O(σ
2β
n α2)

Turning our attention to the first variance term, we introduce the notationMi = {i′ : |Ni ∩Ni′ | ≥
1}. Note that |Mi| ≤ d2. In addition, for all i′ 6∈ Mi, all S ⊆ Ni, and all S ′ ⊆ Ni′ , we have
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S ∩ S ′ = ∅. We may expand the variance,

Var
[

1
n

β∑
t=0

n∑
i=1

αi,t · Yi(zt)
]

= 1
n2

n∑
i=1

n∑
i′=1

β∑
t=0

β∑
t′=0

αi,t · αi′,t′ · Cov
[
Yi(z

t), Yi′(z
t′)
]

≤ ·O(α2)
n2

n∑
i′=1

n∑
i=1

β∑
t=0

β∑
t′=0

∣∣∣∣Cov
[
Yi(z

t), Yi′(z
t′)
]∣∣∣∣

≤ O(α2)
n2

n∑
i=1

n∑
i′=1

β∑
t=0

β∑
t′=0

∑
S⊆Ni
|S|≤β

|ci,S |
∑
S′⊆Ni′
|S′|≤β

|ci′,S′ | ·
∣∣∣∣Cov

[∏
j∈S

ztj ,
∏
j∈S′

zt
′
j′

]∣∣∣∣
≤ O(α2)

n2

( n∑
i=1

∑
i′∈Mi

β∑
t=0

β∑
t′=0

∑
S⊆Ni
|S|≤β

|ci,S |
∑
S′⊆Ni′
|S′|≤β

|ci′,S′ | ·max{B1, B2}

+

n∑
i=1

∑
i′ 6∈Mi

β∑
t=0

β∑
t′=0

∑
S⊆Ni
|S|≤β

|ci,S |
∑
S′⊆Ni′
|S′|≤β

|ci′,S′ | ·B2

)

≤ O(α2)
n2

( n∑
i=1

∑
i′∈Mi

β2 Y 2
max ·max{B1, B2}+

n∑
i=1

∑
i′ 6∈Mi

β2 Y 2
max ·B2

)

≤ O(α2)
n2

(
d2n · β2 Y 2

max ·max{B1, B2}+ n2 · β2 Y 2
max ·B2

)
= O

(
α2β2Y 2

max

(
d2

n max{B1, B2}+B2

))
.

Therefore,

Var
[
T̂TE

]
= O

(
α2β2Y 2

max

(
d2

n max{B1, B2}+B2

)
+ σ2β

n α2

)
.

A.1 Graph Agnostic with Bernoulli Treatment

By plugging in the Bernoulli treatment probabilities into (4), we obtain the estimator:

T̂TE(p) :=
1

n

n∑
i=1

β∑
t=0

(
`t,p(1)− `t,p(0)

)
· Y obs

i,t , `t,p(x) =

β∏
s=0
s 6=t

x− ps
pt − ps

.

The following lemma will be useful in establishing a bound on the variance of this estimator.

Lemma 7. max
t∈{0...β}

{
|`t,p(1)− `t,p(0)|

}
= O

(
∆−βp

)
.

Proof. For each t ∈ 0, . . . , β, we have,

∣∣`t,p(1)− `t,p(0)
∣∣ ≤ ∣∣∣ β∏

s=0
s 6=t

1− ps
pt − ps

∣∣∣+
∣∣∣ β∏
s=0
s 6=t

−ps
pt − ps

∣∣∣ ≤ β∏
s=0
s 6=t

|1− ps|
∆p

+

β∏
s=0
s 6=t

|ps|
∆p

= O
(

∆−βp

)
.
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Here, the first inequality is an application of the triangle inequality, the second uses the definition
of ∆p, and the third uses the fact that each pt ∈ [0, 1].

Proof of Theorem 2. To establish the unbiasedness of the estimator, note that,

E
[
T̂TE(p)

]
=

β∑
t=0

(
`t,p(1)− `t,p(0)

)
· E
[

1
n

n∑
i=1

Yi(z
t)
]

=

β∑
t=0

(
`t,p(1)− `t,p(0)

)
· FB(pt)

=
( β∑
t=0

`t,p(1) · FB(pt)
)
−
( β∑
t=0

`t,p(0) · FB(pt)
)

= FB(1)− FB(0)

= TTE.

Now, we compute a bound on the variance. Since the entries of each zt are independent, Cov
[∏

j∈S z
t
j ,
∏
j′∈S′ z

t′
j′

]
=

0 for any disjoint S,S ′. In addition, since both arguments of this covariance are indicator variables,
we can upper bound the absolute value of each covariance by 1. We appeal to Lemma 6, with
B1 = 1, B2 = 0, and α = ∆−βp (by Lemma 7), giving,

Var
[
T̂TE(p)

]
= O

(
d2β2

n Y 2
max ∆−2β

p + σ2β
n ∆−2β

p

)
.

A.2 Graph Agnostic with Completely Randomized Treatment

We’ll make use of the following algebraic lemma to bound the variance; recall the bracket notation
introduced in equation (3) in Section 2.

Lemma 8. For any constants a, b ∈ N and any p ∈ (0, 1],

∣∣∣∣∣
[
pn−a
n−a

]b
[
pn
n

]b − 1

∣∣∣∣∣ = O
( ab
pn

)
.
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Proof. Expanding the bracket notation, we have,

∣∣∣∣∣
[
pn−a
n−a

]b
[
pn
n

]b − 1

∣∣∣∣∣ =

∣∣∣∣ b−1∏
i=0

(pn− a− i
pn− i

)( n− i
n− a− i

)
− 1

∣∣∣∣
=

∣∣∣∣ b−1∏
i=0

(
1− a

pn− i
)(

1 +
a

n− a− i
)
− 1

∣∣∣∣
=

∣∣∣∣ b−1∏
i=0

(
1 +O

(
a(p−1)
pn

))
− 1

∣∣∣∣
≤

b−1∑
j=1

(
b

j

)
·O
(
a
pn

)j
≤

b−1∑
j=1

O
(
ab
pn

)j
= O

(
ab
pn

)
.

Proof of Theorem 3. To establish the unbiasedness of the estimator, note that,

E
[
T̂TE(k)

]
=

β∑
t=0

(
`t,k/n(1)− `t,k/n(0)

)
· E
[

1
n

n∑
i=1

Yi(z
t)
]

=

β∑
t=0

(
`t,k/n(1)− `t,k/n(0)

)
· FC( kn)

=
( β∑
t=0

`t,k/n(1) · FC( kn)
)
−
( β∑
t=0

`t,k/n(0) · FC( kn)
)

= FC(1)− FC(0)

= TTE.

Next, we establish a bound on the variance of this estimator. We consider the covariance term∣∣∣Cov
[∏

j∈S z
t
j ,
∏
j′∈S′ z

t′
j′

]∣∣∣ for various values of t, t′,S, and S ′. First, note that when t or t′ = 0,

an argument of this covariance is deterministically 0, so the covariance is 0 as well. Otherwise,

when S ∩S ′ 6= ∅, we can bound
∣∣∣Cov

[∏
j∈S z

t
j ,
∏
j′∈S′ z

t′
j′

]∣∣∣ ≤ 1 by noting that both arguments are

indicator variables. In the case that S ∩ S ′ = ∅, we establish a stronger bound using Lemma 8.
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We have,

Cov
[∏
j∈S

ztj ,
∏
j′∈S′

zt
′
j′

]
= E

[∏
j∈S

ztj
∏
j′∈S′

zt
′
j′

]
− E

[∏
j∈S

ztj

]
E
[ ∏
j′∈S′

zt
′
j′

]

≤
[
kt
n

]|S|[kt′
n

]|S′|
·
∣∣∣∣∣
[
kt′−|S|
n−|S|

]|S′|
[
kt′
n

]|S′| − 1

∣∣∣∣∣
= O

(
|S||S′|
kt′

)
= O

(
β2

k1

)
.

In the second last line, we bound the first two factors by 1, and use Lemma 8 (with p =
kt′
n ) to

bound the third factor. Applying Lemma 6, with B1 = 1, B2 = O
(
β2

k1

)
, and α =

(
n

∆k

)β
(by

Lemma 7 using the substitution p = k/n), giving,

Var
[
T̂TE(k)

]
= O

(
β2 Y 2

max

(
d2

n + β2

k1

)
·
(
n

∆k

)2β
+ σ2β

n

(
n

∆k

)2β)
.

A.3 Improved Variance Bounds in the Linear Setting

Proof of Corollary 4. In the linear setting (β = 1) for x = (0, x), the Lagrange polynomial coeffi-
cients evaluate to `0,x(1)− `0,x(0) = −α and `1,x(1)− `1,x(0) = α for α = 1

x , so that the estimator

T̂TE(x) is equal to

T̂TE(x) =
α

n

(
n∑
i=1

Y obs
i,1 −

n∑
i=1

Y obs
i,0

)

= α
n

n∑
i=1

(
Yi(z

1) + εi,1 − εi,0 − ci,∅
)
.

Using the Law of Total Variance, we get

Var
[
T̂TE(x)

]
= Var

[
E
[
T̂TE

∣∣∣ z1
]]

+ E
[
Var

[
T̂TE

∣∣∣ z1
]]

= Var
[
α
n

n∑
i=1

Yi(z
1)
]

+ 2σ2α2

n .

Rewriting the first term, we get

Var
[
α
n

n∑
i=1

Yi(z
1)
]

= α2

n2

n∑
i=1

n∑
i′=1

Cov
[
Yi(z

1), Yi′(z
1)
]

= α2

n2

n∑
i=1

n∑
i′=1

∑
j∈Ni

cij
∑
j′∈Ni′

ci′j′Cov[zj , zj′ ] (11)

= α2

n2

n∑
j=1

n∑
j′=1

 ∑
i:j∈Ni

cij

 ∑
i′:j′∈Ni′

ci′j′

Cov[zj , zj′ ]. (12)
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Here, we used the fact that z0 = 0 deterministically to remove covariance terms, as it has covariance
0 with any other random variable. Under BRD(0, p) we have α = 1

p . Additionally, Var(z1
j ) = p(1−p)

for each j ∈ [n], and Cov[zj , zj′ ] = 0 for j 6= j′ so we may simplify the variance bound to

= α2

n2

n∑
j=1

 ∑
i:j∈Ni

cij

2

·Var(z1
j ) + 2σ2α2

n

≤ α2

n2 · L2
max ·

n∑
j=1

Var(z1
j ) + 2σ2α2

n

≤ 1−p
np · L2

max + 2σ2

np2
.

The analysis for the completely randomized design setting is presented in pg 32 of [25], and we

include it here for convenience. Under CRD(0, k), we have α = n
k . Additionally, Var(z1

j ) = k(n−k)
n2

for each j ∈ [n], and

Cov[z1
j , z

1
j′ ] =

k(k − 1)n

n2(n− 1)
− k2(n− 1)

n2(n− 1)
=
−k(n− k)

n2(n− 1)
≤ 0.

Plugging into (12), we find that

Var
[
T̂TE(k)

]
= 1

k2

n∑
j=1

 ∑
i:j∈Ni

cij

2

·Var(z1
j ) + 1

k2

∑
j 6=j′

 ∑
i:j∈Ni

cij

 ∑
i:j′∈Ni

cij′

 · Cov(z1
j , z

1
j′) + 2σ2n

k2

= 1
k2

n∑
j=1

 ∑
i:j∈Ni

cij

2(
k(n− k)

n2
+

k(n− k)

n2(n− 1)

)
+

1

k

n∑
j=1

∑
i:j∈Ni

cij

2

−k(n− k)

n2(n− 1)
+ 2σ2n

k2

≤ nL2
max
k2

(
k(n− k)

n2
+

k(n− k)

n2(n− 1)

)
+ 2σ2n

k2

≤ (n−k)
(n−1)kL

2
max + 2σ2n

k2
.

A.4 Bernoulli Estimator Utilizing Realized Treatment Counts

We will make use of the following lemma to bound the variance of this estimator.

Lemma 9. Suppose X ∼ Binom(n, p), and define

Y =

{
0 X = 0,

1
Xβ X > 0.

Then, E
[
Y
]
< (1 + o(1))(np)−β.

Proof. Using the law of total expectation, we can upper bound this expectation,

E
[
Y
]
≤ Pr

(
X ≤ (1− δ)np

)
+
(

1
(1−δ)np

)β
· Pr

(
X > (1− δ)np

)
≤ Pr

(
X ≤ (1− δ)np

)
+
(

1
(1−δ)np

)β
. (13)
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We apply Bernstein’s inequality to compute this probability. Note that we can express

X = X1 + . . .+Xn,

with each Xi ∼ Bernoulli(p). Now, define Z = Z1 + . . . + Zn where each Zi = p −Xi. Note that
each E

[
Zi
]

= 0 and |Zi| ≤ 1. Thus,

Pr
(
X ≤ (1− δ)np

)
= Pr

(
Z ≥ δnp

)
≤ exp

( −1
2

(
δnp

)2∑n
i=1 E

[
Z2
i

]
+ 1

3

(
δnp

))
= exp

( −3δ2n2p2

6np(1− p) + 2δnp

)
≤ exp

(−3δ2np

6 + 2δ

)
.

For δ = log−1 n and large enough n, exp

(
−3δ2np
6+2δ

)
< (np)−2β, such that plugging into (13), we find

E
[
Y
]
≤ ((1− δ)np)−β + (np)−2β = (1 + o(1))np−β.

Proof of Theorem 5. First, we reason about the bias of the estimator. We define the event E1 be
the event {k0 < k1 < . . . < kβ}. By the argument from the proof of Theorem 3, T̂TE(k̂/n) is
unbiased on E1. Thus, we can express the bias as

E
[
T̂TE(k̂/n)− TTE

]
= −Pr

(
Ec1
)
· TTE.

However,

Pr
(
Ec1
)

= Pr
( β⋃
t=1

{
k̂t = k̂t−1

})

≤
β∑
t=1

Pr
(
k̂t = k̂t−1

)
(Union Bound)

=

β∑
t=1

Pr
(
k̂t − k̂t−1 ≤ 0

)
≤

β∑
t=1

exp
(
−(pt−pt−1)n

2

)
(Chernoff Bound)

≤ β · exp
(
−∆pn

2

)
,

so the bias decays exponentially with n.

To bound the variance, we apply the law of total variance:

Var
[
T̂TE

]
= Var

[
E
[
T̂TE

∣∣∣ n∑
j=1

ztj = k̂t ∀t
]]

+ E
[
Var
[
T̂TE

∣∣∣ n∑
j=1

ztj = k̂t ∀t
]]
. (14)
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We bound these terms individually. For the first term, note that

E
[
T̂TE(k̂/n)

∣∣∣ n∑
j=1

ztj = k̂t ∀t
]

= TTE · I(E1).

which implies that,

Var

[
E
[
T̂TE(k̂/n)

∣∣∣ n∑
j=1

ztj = k̂t ∀t
]]

= TTE2 ·Var
(
I(E1)

)
= TTE2 · Pr

(
E1

)
· Pr

(
Ec1
)
.

This term decays exponentially as n grows large, so (14) will be dominated by the second term.

Next, we define the event

E2 := E1 ∩
β⋂
t=1

{
|k̂t − ptn| ≤ δptn

}
.

Then,

Pr
(
Ec2
)

= Pr
(
Ec1 ∪

β⋃
t=1

{
|k̂t − ptn| > δptn

})

≤ Pr
(
Ec1
)

+

β∑
t=1

Pr
(
|k̂t − ptn| ≥ δptn

)
(Union Bound)

≤ Pr
(
Ec1
)

+

β∑
t=1

exp
(−δ2ptn

3

)
(Chernoff Bound)

≤ Pr
(
Ec1
)

+ β · exp
(−δ2p1n

3

)
.

Notice that by a different application of the law of total variance, we get

Var
[
T̂TE(k̂/n)

]
= Var

[
E
[
T̂TE(k̂/n)

∣∣∣ zt
]]

+ E
[
Var

[
T̂TE(k̂/n)

∣∣∣ zt
]]

= Var

[
1
n

β∑
t=0

n∑
i=1

(
`t,k̂/n(1)− `t,k̂/n(0)

)
Yi(z

t)

]
+ E

[
σ2

n

β∑
t=0

(
`t,k̂/n(1)− `t,k̂/n(0)

)2
]
.

We can bound `t,k̂/n(1)− `t,k̂/n(0) ≤ nβ independently of the realized treatment counts to get

E

[
σ2

n

β∑
t=0

(
`t,k̂/n(1)− `t,k̂/n(0)

)2
]
≤ βσ2

n · n2β.

Let T̂TE−ε := 1
n

∑β
t=0

∑n
i=1

(
`t,k̂/n(1)− `t,k̂/n(0)

)
Yi(z

t).

Using the fact that the variance of Bernoulli random variables is always bounded above by 1, and
again using the bound `t,k̂/n(1)− `t,k̂/n(0) ≤ nβ, we get

Var
[
T̂TE−ε

]
≤ 1

n2

n∑
i=1

n∑
i′=1

β∑
t=0

β∑
t′=0

∑
S⊆Ni
|S|≤β

∑
S′⊆Ni′
|S′|≤β

∣∣ci,S∣∣·∣∣ci′,S′∣∣·∣∣`t, k̂
n

(1)− `
t, k̂
n

(0)
∣∣·∣∣`

t′, k̂
n

(1)− `
t′, k̂
n

(0)
∣∣

≤ β2 · Y 2
max · n2β.
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Then, to bound the second term of (14), we use the unconditional bound

Var
[
T̂TE(k̂/n)

]
≤ β2 · Y 2

max · n2β + βσ2

n · n2β. (15)

Applying the definition of expectation, we have

E
[
Var
[
T̂TE

∣∣∣ n∑
j=1

ztj = k̂t

]]

≤
∑
k∈E2

Pr
( n∑
j=1

ztj = k̂t ∀t
)
·Var

[
T̂TE

∣∣∣ n∑
j=1

ztj = k̂t

]
+ Pr(Ec2) · (β2Y 2

maxn
2β + βσ2

n n2β)

≤ O
(
β2 Y 2

max

(
d2

n + β2

(1−δ)p1n

)
·
(

n
(∆p−δp)n

)2β
+ σ2β

n

(
n

(∆p−δp)n

)2β)
+ Pr(Ec2) · (β2Y 2

maxn
2β + βσ2

n n2β).

Here, the first equality makes use of our unconditional bound on the variance, given in inequality 15.
The second inequality plugs the variance bound from Theorem 3 for the most pessimistically per-
turbed treatment count vector in E2. The probability Pr(Ec2) decays exponentially in n. Therefore,
choosing δ = Θ( 1

log(n)) and letting n get sufficiently large, the upper bound for this estimator is

O
(
β2 Y 2

max

(
d2

n + β2

p1n

)
·∆−2β

p + βσ2

n ∆−2β
p

)
.

B Unbiased Estimation with Additional Observations

A natural question is whether we continue to see improvements in the estimator when we increase
the number of estimates beyond β + 1. Note that we restrict our attention to unbiased estimators,
as we desire the asymptotic reduction in mean-squared error as the population grows large. We
may thus assess the quality of an estimator by its variance. While in general, with noisy data, more
measurements may result in improveed estimates, we show that in the linear setting, under perfect
observations (i.e. no observation noise), these extra measurements do not help to reduce variance.
In fact, we’ll argue that the unbiased estimator with minimum variance is the one that ignores all
but its first and last observations and then performs polynomial interpolation on these endpoints.
We record this result in Theorem 10.

Theorem 10. Suppose that the potential outcomes model is linear, and a staggered rollout Bernoulli
design is implemented with a set of T +1 distinct treatment probabilities p0 < p1 < . . . < pT . Then,
the unbiased estimator for TTE of the form

T̂TE =
1

n

n∑
i=1

T∑
t=0

αtYi(z
t)

that minimizes variance has α0 = −1
pT−p0 , αT = 1

pT−p0 and α1, . . . , αT−1 = 0.

On one hand, such a result seems surprising: having more observations seems like it would only
lead to a stronger estimator. However, what is overlooked is that there is strong correlation in the
different measurements due to the monotonicity of treatments enforced in the staggered rollout de-
sign, such that the information in the first and last measurements contain all the useful information
one could construct from the intermediate measurements. When random noise is added, the trade-
off between the noise-canceling effects of additional measurements and the increased sensitivity of
higher-degree interpolating polynomials adds an additional level of complexity.
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Proof. To begin, we derive the constraints on (α0, . . . , αT ) needed to ensure unbiasedness. We have,

E
[
T̂ TE

]
=

1

n

n∑
i=1

T∑
t=0

αt

(
ci,∅ + pt

∑
j∈Ni

cij

)
=

1

n

n∑
i=1

[
ci,∅

( T∑
t=0

αT

)
+
∑
j∈Ni

cij

( T∑
t=0

αT pt

)]
.

Comparing to our expression for TTE in terms of the ci,S coefficients:

TTE = 1
n

n∑
i=1

∑
S⊆Ni

1≤|S|≤β

ci,S ,

we see that we must have,

T∑
t=0

αt = 0,

T∑
t=0

αtpt = 1. (16)

Now, we consider the variance of this family of estimators. We have,

Var
[
T̂ TE

]
=

1

n2

n∑
i=1

n∑
i′=1

T∑
t=0

T∑
t′=0

αtαt′ · Cov
[
Yi(z

t), Yi′(z
t′)
]

=
1

n2

n∑
i=1

n∑
i′=1

T∑
t=0

T∑
t′=0

∑
j∈Ni∩Ni′

αtαt′ · cijci′j ·
(
pmin(t,t′) − ptpt′

)
=

(
1

n2

n∑
i=1

n∑
i′=1

∑
j∈Ni∩Ni′

cijci′j

)( T∑
t=0

T∑
t′=0

αtαt′ ·
(
pmin(t,t′) − ptpt′

))
. (17)

Note that the first factor is a constant depending only on the network (i.e. not on the α and p
parameters of the estimator). Thus, to minimize the variance, it suffices to locate critical values of
this second factor, subject to our unbiasedness constraints. We can rewrite this factor

T∑
t=0

α2
t · pt(1− pt) + 2

T∑
t=0

T∑
t′=t+1

αtαt′ · pt(1− pt′) =

T∑
t=0

αtpt

(
αt(1− pt) + 2

T∑
t′=t+1

αt′(1− pt′)
)
.

Then, we consider the Lagrangian,

L :=

T∑
t=0

αtpt

(
αt(1− pt) + 2

T∑
t′=t+1

αt′(1− pt′)
)

+ λ
T∑
t=0

αt + µ
(

1−
T∑
t=0

αtpt

)
. (18)

We compute the partial derivatives of this Lagrangian with respect to each αt as,

∂L
∂αt

= 2(1− pt)
t−1∑
t′=0

αt′pt′ + 2pt

T∑
t′′=t

αt′′(1− pt′′) + λ− ptµ.

We will set each of these partial derivatives equal to 0 sequentially to fix each of the variables at
the critical point. First, we consider the partial derivative with respect to α0. We have,

∂L
∂α0

= 2p0

T∑
t′′=0

αt′′(1− pt′′) + λ− p0µ = −p0(2 + µ) + λ.
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Here, the second inequality uses the unbiasedness constraints. Setting this partial derivative equal
to 0, we must have λ = p0(2 + µ). Next, we consider the partial derivative with respect to α1:

∂L
∂α1

= 2α0p0(1− p1)− 2p1

T∑
t′′=1

αt′′(1− pt′′) + λ− p1µ

= 2α0p0(1− p1) + 2p1

(
− 1− α0(1− p0)

)
+ λ− p1µ (unbiasedness)

= 2α0p0(1− p1)− 2p1 − 2p1α0(1− p0) + p0(2 + µ)− p1µ

= (p0 − p1)(2α0 + 2 + µ).

Note that p0−p1 6= 0 by our distinct probabilities assumption. Thus, setting this partial derivative
equal to 0, we must have 2 + µ = −2α0. In addition, combining with the previous constraint, we
can re-express λ = −2α0p0. Next, we consider the partial derivative with respect to α2:

∂L
∂α2

= 2α0p0(1− p2) + 2α1p1(1− p2)− 2p2 − 2p2α0(1− p0)− 2p2α1(1− p1) + λ− p2µ

= 2α0(p0 − p2) + 2α1(p1 − p2)− 2α0p0 − p2(2 + µ)

= 2α0(p0 − p2) + 2α1(p1 − p2)− 2α0(p0 − p2)

= 2α1(p1 − p2).

Setting this partial derivative equal to 0, we must have α1 = 0, since p1 − p2 6= 0. We can iterate
this process on the partial derivatives with respect to α3, . . . , αT , concluding that α2, . . . , αT−1 = 0.

We are left with the system of two linear equations given by the unbiasedness constraints:

α0 + αT = 0, α0p0 + αT pT = 1.

The unique solution to this system is α0 = −1
pT−p0 , αT = 1

pT−p0 .

C Experimental Results under a Quadratic Outcomes Model

In this section, we discuss the results of our experiments1 under a quadratic potential outcomes
model (β = 2). As in the linear setting (see Section 4), for each population size n, we sample G
networks from the distribution described in Section 4. For each configuration of parameters in the
experiment, we sample N treatment schedules {z0, . . . , zβ} from our parameterized distribution
class (Bernoulli or CRD) and compute the TTE using each estimator. In the experiments for both
this setting and the linear setting, we set G = 30 and N = 100.

For each estimator, we plot the relative bias of the TTE estimates averaged over the results from
these GN samples and normalized by the magnitude of the TTE. The width of the shading in the
figures depicts the standard deviation across the GN estimates. The experiments in the quadratic
setting ran for 29.4 minutes on the same Linux machine.

In Figure 3, we visualize the effect of three network or estimator parameters on the quality of each
of the five TTE estimators (the four described in the Other Algorithms paragraph of Section 4,
and our CRD estimator with treatment targets kt = tk

β ). Specifically, we consider the effects of the
population size (n), the maximum proportion of treated individuals (k/n) and the degree of the
potential outcomes model (β). Each of the plots fixes two of these parameters and varies the third.
Specific settings of the parameters are listed on each plot.

1Code can be found at https://tinyurl.com/kee88h6d

25

https://tinyurl.com/kee88h6d


2000 4000 6000 8000 10000 12000 14000

n

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
R

el
at

iv
e

B
ia

s
β = 2, k/n = 0.15, r = 1.25

PI(k/n)

LS-Prop

LS-Num

DM

DM(0.75)

(a) Varying size of the population

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
B

ia
s

β = 2, n = 5000, k/n = 0.15

PI(k/n)

LS-Prop

LS-Num

DM

DM(0.75)

(b) Varying direct:indirect effects

0.1 0.2 0.3 0.4 0.5

k/n

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
B

ia
s

β = 2, n = 5000, r = 1.25

PI(k/n)

LS-Prop

LS-Num

DM

DM(0.75)
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Figure 3: Three graphs visualizing the performance of various TTE estimators as different param-
eters are adjusted. The height of each graph depicts the experimental relative bias of the estimator
and the shaded width depicts the experimental standard deviation.

Our estimator is the blue line with blue shading on each of the plots. As expected, the estimator
is unbiased and the variance decreases as n or k/n increases. On the other hand, regardless of
population size or treatment budget, the rest of the estimators remain biased. In general, the
variances of these other estimators remains higher than ours, although it is worth noting that when
the treatment budget k/n is lower, the variance of our estimator is higher. As the ratio r increases,
the network (aka indirect) effects become greater relative to the direct effect. This is exhibited by
the increase in the bias of all the estimators, besides ours, as shown in Figure 3b. As expected,
when the ratio is near 0, all estimators are unbiased as this corresponds to the case where there is
no network interference.

In Figure 4, we compare the variants of our estimator when β = 2, evaluating T̂TEPI(k/n) under

CRD and evaluating T̂TEPI(p) and T̂TEPI(k̂/n) under Bernoulli(p) randomized design, where
pt = tp/β and k̂ is the vector of realized treatment counts.

2000 4000 6000 8000 10000 12000 14000

n

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

R
el

at
iv

e
B

ia
s

β = 2, k/n = 0.15, r = 1.25

PI(k/n)

PI(p)

PI(k̂/n)

(a) Varying size of the population

0.1 0.2 0.3 0.4 0.5

k/n

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

R
el

at
iv

e
B

ia
s

β = 2, n = 5000, r = 1.25

PI(k/n)

PI(p)

PI(k̂/n)

(b) Varying treatment budget

Figure 4: Two graphs visualizing the performance of our proposed TTE estimators as the size
of the population (n) or treatment budget (k/n) is varied. The height of each graph depicts the
experimental relative bias of the estimator and the shaded width depicts the experimental standard
deviation. The blue and the green plots essentially overlap.

The estimators T̂TEPI(k/n) and T̂TEPI(k̂/n) perform nearly identically as we vary the size of
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(b) Varying ratio of direct:indirect effects

0.1 0.2 0.3 0.4 0.5

p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
B

ia
s

β = 1, n = 5000, r = 1.25

PI(p)

LS-Prop

LS-Num

DM

DM(0.75)

(c) Varying treatment budget
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(d) Varying the model degree

Figure 5: Four graphs visualizing the performance of various TTE estimators, under Bernoulli
randomized design, as various parameters are adjusted. The height of each graph depicts the
experimental relative bias of the estimator and the shaded width depicts the experimental standard
deviation.

the population. They differ for lower treatment budgets, with T̂TEPI(k̂/n) having lower bias

than T̂TEPI(k/n) but about the same variance. As the treatment budget increases, they perform

almost identically. T̂TEPI(k̂/n) has lower variance than T̂TEPI(p), which is intuitive as it performs
polynomial interpolation on the realized treatment fraction rather than the expected treatment
fraction.

D Experimental Results under Bernoulli Design

We performed similar experiments to Section 4 and Appendix C for the Bernoulli randomized
design setting. The main difference is that our parameterization on the budget in the realized
fraction of treated individuals, k/n, has been replaced by an upper threshold on the treatment
probability, p. The results we find in this Bernoulli design setting exhibit the same trends as those
under completely randomized design. We include these plots for completeness and refer the reader
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(a) Varying size of the population
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(b) Varying direct:indirect effects

Figure 6: Two graphs visualizing the performance of our proposed TTE estimators under Bernoulli
randomized design as the size of the population (n) or ratio between direct and indirect effects (r)
is varied. The height of each graph depicts the experimental relative bias of the estimator and the
shaded width depicts the experimental standard deviation.

to earlier sections for discussion and analysis.
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