
Kaleidoscope: An Efficient, Learnable Representation For All
Structured Linear Maps

Tri Dao1, Nimit S. Sohoni∗2, Albert Gu∗1, Matthew Eichhorn3, Amit Blonder4, Megan
Leszczynski1, Atri Rudra4, and Christopher Ré1

1Department of Computer Science, Stanford University
2Institute for Computational and Mathematical Engineering, Stanford University

3Center for Applied Mathematics, Cornell University
4Department of Computer Science and Engineering, University at Buffalo, SUNY

{trid,nims,albertgu}@stanford.edu, mae226@cornell.edu, amitblon@buffalo.edu,
mleszczy@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

January 1, 2021

Abstract

Modern neural network architectures use structured linear transformations, such as low-rank matrices,
sparse matrices, permutations, and the Fourier transform, to improve inference speed and reduce memory
usage compared to general linear maps. However, choosing which of the myriad structured transformations
to use (and its associated parameterization) is a laborious task that requires trading off speed, space, and
accuracy. We consider a different approach: we introduce a family of matrices called kaleidoscope matrices
(K-matrices) that provably capture any structured matrix with near-optimal space (parameter) and time
(arithmetic operation) complexity. We empirically validate that K-matrices can be automatically learned
within end-to-end pipelines to replace hand-crafted procedures, in order to improve model quality. For
example, replacing channel shuffles in ShuffleNet improves classification accuracy on ImageNet by up to
5%. K-matrices can also simplify hand-engineered pipelines—we replace filter bank feature computation
in speech data preprocessing with a learnable kaleidoscope layer, resulting in only 0.4% loss in accuracy
on the TIMIT speech recognition task. In addition, K-matrices can capture latent structure in models:
for a challenging permuted image classification task, a K-matrix based representation of permutations
is able to learn the right latent structure and improves accuracy of a downstream convolutional model
by over 9%. We provide a practically efficient implementation of our approach, and use K-matrices in a
Transformer network to attain 36% faster end-to-end inference speed on a language translation task.

1 Introduction
Structured linear maps are fundamental and ubiquitous in modern machine learning. Their efficiency in
speed (fast algorithms) and space (few parameters) can reduce computation and memory usage. The class of
structured linear maps includes fixed specialized transforms such as the discrete Fourier transform (DFT)
and Hadamard transform used in signal processing (Cooley et al., 1969), convolutions for image, language,
and speech modeling (Gu et al., 2018), and low-rank and sparse matrices for efficient storage and inference
on edge devices (Yu et al., 2017). Forms of structure such as sparsity have been at the forefront of recent
advances in ML (Frankle & Carbin, 2019), and are critical for on-device and energy-efficient models, two
application areas of tremendous recent interest (Tsidulko, 2019; Schwartz et al., 2019).

There are a plethora of classes of structured linear maps, each with a significantly different representation,
algorithm, and implementation. They have different tradeoffs in terms of inference speed, training speed,

∗These authors contributed equally

1

ar
X

iv
:2

01
2.

14
96

6v
1

 [
cs

.L
G

]
 2

9
D

ec
 2

02
0

and accuracy, and the conventional wisdom is that no one class works uniformly well across all applications.
As a result, ML practitioners currently hand-pick specific classes of structured linear maps for each of their
applications. This is a difficult and labor-intensive task.

Ideally, these problems should be addressed with a universal representation for structured linear maps:
(i) Such a parameterization should be expressive enough to capture important classes of structure, with a
nearly tight parameter count and runtime: the space required to represent the linear map should be close to
optimal, and the resulting algorithm for matrix vector multiplication should be close to the fastest possible
algorithm. (ii) The parameterization should be differentiable in order to be learned as a component of
end-to-end ML pipelines, enabling it to easily be used as a drop-in replacement for manually engineered
structured components. (iii) The parameterization should admit practically efficient algorithms for training
and inference, in terms of both speed and memory.

Currently, no class of structured linear maps satisfies all of these criteria. Most existing classes of
structured matrices—such as the class of low-rank matrices—fail to tightly capture other important types of
structure. For example, the DFT has an efficient structured representation of size O(n log n), yet cannot be
well-approximated by a low-rank transform of size � n2. Another important type of structure is sparsity ; lots
of exciting recent work has focused on the design of sparse neural networks. For instance, sparse networks
of comparable quality to their dense counterparts—yet an order of magnitude fewer parameters—may be
created via pruning (Han et al., 2016) or by identifying “winning lottery tickets” (Frankle & Carbin, 2019).
In parallel, recent theoretical results by De Sa et al. (2018) show that sparsity and the notion of structure in
linear maps are fundamentally linked: any given matrix can be factored into a product of sparse matrices
with total parameter count equal to the efficiency (i.e. minimum arithmetic circuit complexity) of the matrix.
In other words, the representation of linear maps as products of sparse matrices tightly captures all forms of
structure. Unfortunately, it is difficult to actually learn these sparse factorizations, because it requires finding
the sparsity patterns of the factors—a discrete, nondifferentiable search problem. Thus, current methods for
training sparse neural networks are either expensive (Frankle & Carbin, 2019) or rely on highly hand-tuned
heuristics for evolving the sparsity patterns throughout training (Dettmers & Zettlemoyer, 2019).

By contrast, we propose a representation of linear maps as products of sparse matrices with specific
predefined sparsity patterns (Section 2), and show that it does satisfy our desiderata: it retains the ex-
pressiveness of unstructured sparsity, while being differentiably learnable and efficient like other structured
representations. Concretely, our representation is based on products of a particular building block known as a
butterfly matrix (Parker, 1995; Dao et al., 2019); we term such products kaleidoscope matrices (K-matrices for
short).1 (i) Our main theoretical contribution (Section 2.3) concerns the expressiveness of this representation:
we show that any structured linear map (i.e. one that can be applied using s� n2 arithmetic operations) can
be represented as a K-matrix, with a nearly tight number of parameters and algorithmic complexity (both on
the order of s up to logarithmic factors). (ii) The kaleidoscope representation is fully differentiable; thus,
all the parameters of a K-matrix can be learned using standard optimization algorithms such as SGD. (iii)
Because of their simple, regular structure, K-matrices are practical and easy to use. We provide memory- and
runtime-efficient implementations of K-matrix multiplication on CPU and GPU for training and inference,
with a simple PyTorch interface.

We empirically validate that, due to their expressiveness, learnability, and efficiency, we can use K-matrices
as a drop-in replacement for linear components in deep learning models. In Section 3.1, we use K-matrices to
replace hand-crafted structure in two different settings. We simplify the six steps of filter bank computation
in speech preprocessing into a single learnable K-matrix step, with only an 0.4% accuracy drop on the TIMIT
speech recognition task. We use K-matrices to replace channel shuffles in ShuffleNet, improving ImageNet
classification accuracy by up to 5%. In Section 3.2, we show that K-matrices can successfully recover latent
structure; a K-matrix is used to learn latent permutations in a permuted image dataset (Permuted CIFAR),
resulting in 9 points higher accuracy in a downstream CNN model. In Section 3.3, we show that our efficient
K-matrix multiplication implementation can be applied to speed up real-world tasks: we replace linear layers
with K-matrices in a DynamicConv-Transformer network to attain 36% faster end-to-end inference speed
with a 1.0 drop in BLEU score on the IWSLT14 German→English translation task.

1A group of butterflies is known as a kaleidoscope.

2

2 A nearly-tight parameterization of all structured matrices
We first present some background on the characterization of all structured matrices (i.e. those with subquadratic
multiplication algorithms) as products of sparse factors, along with the definition of butterfly matrices. We
then propose a differentiable family of kaleidoscope matrices, composed of products of butterfly matrices,
and prove their expressivity: all structured matrices can be represented in this form, with almost optimal
parameter count and runtime.

2.1 Background: sparse factorization, butterfly matrices
Sparse factorization One method of constructing matrices with theoretically fast matrix-vector multi-
plication algorithms is as a product of sparse matrices, so that multiplication by an arbitrary vector has
cost proportional to the total number of nonzeros (NNZ) of the matrices in the product. Surprisingly, the
converse is also true. De Sa et al. (2018) introduce the concept of sparse product width (SPW), which roughly
corresponds to the total NNZ in a factorization of a matrix, and show that it is an asymptotically optimal
descriptor of the algorithmic complexity of matrix-vector multiplication (Bürgisser et al., 2013). We use
a similar argument in the proof of our main theorem (Section 2.3). However, attempting to learn such a
factorization of a given matrix is difficult, as the sparsity constraint is not continuous. Moreover, because of
the possibly irregular sparsity patterns, it is difficult to realize the theoretical speedups in practice (Gray
et al., 2017; Gahvari et al., 2007).

Butterfly matrices Butterfly matrices, encoding the recursive divide-and-conquer structure of the fast
Fourier transform (FFT) algorithm, have long been used in numerical linear algebra (Parker, 1995; Li et al.,
2015) and machine learning (Mathieu & LeCun, 2014; Jing et al., 2017; Munkhoeva et al., 2018; Dao et al.,
2019; Choromanski et al., 2019). Here we define butterfly matrices, which we use as a building block for our
hierarchy of kaleidoscope matrices.

Definition 2.1. A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix of the form Bk =

[
D1 D2

D3 D4

]
where each Di is a k

2 ×
k
2 diagonal matrix. We restrict k to be a power of 2.

Definition 2.2. A butterfly factor matrix of size n with block size k (denoted as B
(n)
k) is a block diagonal

matrix of nk (possibly different) butterfly factors of size k:

B
(n)
k = diag

(
[Bk]1 , [Bk]2 , . . . , [Bk]n

k

)
Definition 2.3. A butterfly matrix of size n (denoted as B(n)) is a matrix that can be expressed as a
product of butterfly factor matrices: B(n) = B

(n)
n B

(n)
n
2
. . .B

(n)
2 . Equivalently, we may define B(n) recursively

as a matrix that can be expressed in the following form:

B(n) = B(n)
n

[
[B(n

2)]1 0
0 [B(n

2)]2

]
(Note that [B(n

2)]1 and [B(n
2)]2 may be different.)

2.2 The kaleidoscope hierarchy
Using the building block of butterfly matrices, we formally define the kaleidoscope (BB∗) hierarchy and prove
its expressiveness. This class of matrices serves as a fully differentiable alternative to products of sparse
matrices (Section 2.1), with similar expressivity. In Appendix J, we show where various common structured
matrix classes are located within this hierarchy.

The building block for this hierarchy is the product of a butterfly matrix and the (conjugate) transpose of
another butterfly matrix (which is simply a product of butterfly factors taken in the opposite order). Figure 1
visualizes the sparsity patterns of the butterfly factors in BB∗, where the red and blue dots represent the
allowed locations of nonzero entries.

3

Figure 1: Visualization of the fixed sparsity pattern of the building blocks in BB∗, in the case n = 16. The
red and blue dots represent all the possible locations of the nonzero entries.

Definition 2.4 (Kaleidoscope hierarchy, kaleidoscope matrices).
• Define B as the set of all matrices that can be expressed in the form B(n) (for some n).
• Define BB∗ as the set of matrices M of the form M = M1M

∗
2 for some M1,M2 ∈ B.

• Define (BB∗)w as the set of matrices M that can be expressed as M = Mw . . .M2M1, with each Mi ∈ BB∗
(1 ≤ i ≤ w). (The notation w represents width.)

• Define (BB∗)we as the set of n × n matrices M that can be expressed as M = SEST for some en × en
matrix E ∈ (BB∗)w, where S ∈ Fn×en =

[
In 0 . . . 0

]
(i.e. M is the upper-left corner of E). (The

notation e represents expansion relative to n.)
• M is a kaleidoscope matrix, abbreviated as K-matrix, if M ∈ (BB∗)we for some w and e.

The kaleidoscope hierarchy, or (BB∗) hierarchy, refers to the families of matrices (BB∗)1e ⊆ (BB∗)2e ⊆ . . . ,
for a fixed expansion factor e. Each butterfly matrix can represent the identity matrix, so (BB∗)we ⊆ (BB∗)w+1

e .
We show that the inclusion is proper in Appendix E. This hierarchy generalizes the BP hierarchy proposed
by Dao et al. (2019), as shown in Appendix J.

Efficiency in space and speed Each matrix in (BB∗)we is a product of 2w total butterfly matrices and
transposes of butterfly matrices, each of which is in turn a product of log(ne) factors with 2ne nonzeros (NNZ)
each. Therefore, each matrix in (BB∗)we has 4wne log(ne) parameters and a matrix-vector multiplication
algorithm of complexity O(wne log ne) (by multiplying the vector with each sparse factor sequentially). We
prove this more formally in Appendix E. For the applications in Section 3, w and e are small constants (up
to 2), so those K-matrices have O(n log n) parameters and runtime.

2.3 All low-depth structured matrices are in the kaleidoscope hierarchy
We now present our main theoretical result: the fact that general linear transformations, expressed as
low-depth linear arithmetic circuits, are captured in the BB∗ hierarchy with low width. Arithmetic circuits
are commonly used to formalize algebraic algorithmic complexity (Bürgisser et al., 2013); we include a primer
on this in Appendix M. The quantities of interest are the total number of gates in the circuit, representing
the total number of steps required to perform the algorithm for a serial processor, and the depth, representing
the minimum number of steps required for a parallel processor.

Theorem 1. Let M be an n× n matrix such that multiplication of M times an arbitrary vector v can be
represented as a linear arithmetic circuit with s total gates and depth d. Then, M ∈ (BB∗)O(d)

O(s
n).

The representation of such a matrix M in the BB∗ hierarchy has O(ds log s) parameters and yields a
O(ds log s) multiplication algorithm, compared to the O(s) parameters and runtime of the circuit representa-
tion. To the best of our knowledge, the most general classes of efficient matrices that have been studied (De Sa
et al., 2018) have depth d on the order of log n or poly log n. In these cases, the representation with K-matrices
matches the best known bounds up to polylogarithmic factors.

The crux of the proof of Theorem 1 (shown in Appendix F) is the construction of an almost tight
representation of any sparse matrix as a K-matrix (i.e. a product of butterfly matrices): specifically, we show

that any n× n sparse matrix with s nonzeros is in (BB∗)O(d s
ne)

O(1) (Theorem 3, Appendix I). We then leverage

4

the expressivity result of products of sparse matrices to represent all arithmetic circuits (similar to the sparse
product width result of De Sa et al. (2018) referenced in Section 2.1) to complete the proof of Theorem 1.

This intermediate result is also a novel characterization of sparse matrices. For a matrix with s NNZ, the
kaleidoscope representation has O(s log n) parameters and runtime, instead of the optimal O(s) parameters
and runtime; so, we trade off an extra logarithmic factor in space and time for full differentiability (thanks to
the fixed sparsity patterns in the representation). The intuition behind the result is as follows: a sparse matrix
with s NNZ can be written as a sum of ds/ne matrices each with at most n NNZ. Any n× n matrix with at
most n NNZ, up to permuting the rows and columns, is a product of two butterfly matrices (Lemma I.1).
Sorting networks (Knuth, 1997) imply that permutation matrices are in (BB∗)O(logn), but we tighten the
result to show that they are in fact in BB∗ (Theorem 2, Appendix G). We thus obtain a kaleidoscope
representation for each summand matrix with O(n log n) parameters. By the addition closure property of the
BB∗ hierarchy (Lemma H.5), each sparse matrix with s NNZ then has a kaleidoscope representation with
O(s log n) parameters.

Tight representation for structured linear maps common in ML Even though Theorem 1 suggests
that the kaleidoscope representation can be loose by logarithmic factors, many structured linear maps common
in ML can be represented in this hierarchy with an optimal number of parameters and runtime compared to
the best known parameterizations, up to constant factors. Appendix J includes several examples such as
discrete transforms (the DFT, discrete cosine transform (DCT), discrete sine transform (DST), and Hadamard
transform), convolution (i.e. circulant matrices), Toeplitz matrices (Gray, 2006), structured matrices for
kernel approximation ((HD)3 (Yu et al., 2016)) and compact neural network design (Fastfood (Le et al.,
2013), ACDC (Moczulski et al., 2016)). There have been other large classes of structured matrices proposed
in the machine learning literature, such as Toeplitz-like (Sindhwani et al., 2015) and low displacement rank
(LDR) (Thomas et al., 2018), but they are not known to be able to capture these common structures as
tightly as K-matrices can. More detailed discussions are in Appendix A.

2.4 Extensions
ReLU networks with low-depth structured weight matrices In Appendix L, we prove that finding
an efficient circuit for a ReLU network can be reduced to finding efficient circuits for each of its weight
matrices, with at most a constant factor greater size and run-time (i.e. number of gates). We also show
that ReLU networks with kaleidoscope weight matrices have near-linear VC dimension in the number of
parameters, matching the bound for networks with unconstrained weight matrices (Bartlett et al., 1999;
Harvey et al., 2017) and LDR (Thomas et al., 2018). This yields a corresponding sample complexity bound.

Orthogonal kaleidoscope hierarchy Orthogonal butterfly matrices are one commonly used variant due
to their improved stability (Parker, 1995), where each butterfly factor is constrained to be orthogonal:[

C S
−S C

]
with C,S being diagonal and C2 + S2 = I. Similar to the BB∗ hierarchy, in Appendix K, we define

the OBB hierarchy consisting of products of orthogonal butterfly matrices and diagonal matrices, and show
that this hierarchy has the same expressiveness as the BB∗ hierarchy.

3 Empirical Evaluation
We validate three claims that suggest that kaleidoscopes are a promising technique to learn different types of
structure in modern architectures.
1. Section 3.1: for applications in speech and lightweight computer vision relying on highly hand-crafted

structured transformations, we show that we can recover—and even improve—the quality of such
architectures by simply replacing existing hand-structured components with K-matrices, with only a
small overhead in memory and computation.

2. In Section 3.2, for a challenging task with latent structure (Permuted CIFAR-10), a K-matrix-based
relaxation of permutations is able to learn the right latent permutation, yielding 9 points better accuracy

5

in a downstream CNN compared to standard RNN and CNN baselines used on such permuted image
classification tasks.

3. In Section 3.3, we show that, although not yet highly optimized, our current implementation of K-matrices
can improve the inference throughput of DynamicConv Transformer, a state-of-the-art fast machine
translation model, by 36%, with only a relatively small drop in translation quality.

In all of the above applications, as K-matrices are fully differentiable, we simply train them jointly with the
rest of the model using standard learning algorithms (such as SGD). Full details for all of the experiments
(precise architectures, hyperparameters, etc.) are in Appendix B 2.

3.1 Replacing hand-crafted structures
We validate that kaleidoscope matrices can recover or improve on the performance of hand-crafted structure
in ML models. For example, a single learnable kaleidoscope layer can be used to replace the hand-engineered
filter bank speech preprocessing pipeline with only 0.4% loss in accuracy on the TIMIT speech recognition
task (Section 3.1.1). Replacing channel shuffles in ShuffleNet with learnable K-matrices improves classification
accuracy on ImageNet by up to 5.0% (Section 3.1.2).

3.1.1 Speech preprocessing

Figure 2: Comparison of the standard MFSC featurization pipeline with our “kaleidoscope” pipeline.

We show that K-matrices can remove the need for hand-tuning by significantly simplifying speech
recognition data preprocessing pipelines. In particular, we can entirely replace the complex hand-crafted
MFSC featurization commonly used in speech recognition tasks with a fully learnable kaleidoscope layer,
with only 0.4% drop in accuracy on the TIMIT speech recognition benchmark. Results are presented in
Table 1. Our approach is competitive with the accuracy of standard models that use hand-crafted features,
and significantly outperforms current approaches for learning from raw audio input.

Table 1: TIMIT phoneme error rate (PER%) for different methods. Our kaleidoscope, raw-input version
of the model (row 3) performs competitively with the original model trained on MFSC features (row 1),
with only an 0.4% drop in PER. It significantly outperforms existing approaches that learn from raw audio,
i.e. without handcrafted featurization (e.g. SincNet [row 2], which to our knowledge attains the previous
state-of-the-art for learning from raw audio), and is only 0.8% less accurate than the overall state-of-the-art
on TIMIT.3 Additional comparisons are given in Appendix B.1.

Method Test set PER% Raw audio input

MFSC features + LSTM 14.2 7
SincNet (Ravanelli et al., 2019) 17.2 3
Kaleidoscope + LSTM 14.6 3

2Code that implements Kaleidoscope matrix multiplication is available at https://github.com/HazyResearch/butterfly
3The current state-of-the-art results from Ravanelli et al. (2018) use a concatenation of three different speech audio

featurizations—MFSC, MFCC, and fMLLR—as the neural network input, along with a customized RNN architecture (LiGRU)
specifically designed for speech recognition.

6

https://github.com/HazyResearch/butterfly

Modern speech recognition models currently rely on carefully hand-crafted features extracted from the
audio, which are then fed into an acoustic model. By contrast, learning directly from the raw audio—i.e.
end-to-end learning from the audio waveform without any manual featurization—obviates the need for this
complicated and often expensive preprocessing step. There have been recent attempts to learn directly from
raw audio, such as SincNet (Ravanelli & Bengio, 2018); however, they often rely on specialized architectures
designed by domain experts. Instead, we use a standard RNN speech recognition architecture, but use a
learnable kaleidoscope layer to replace the featurization steps.

The baseline architecture takes as input filter bank (MFSC) features, which are a popular standard
featurization for speech recognition (Paliwal, 1999) and involve several steps hand-crafted specifically for
this domain. These features are extracted from the raw audio waveform, and fed as the input into a
Bi-LSTM model. We significantly simplify this pipeline by replacing the featurization step with a trainable
kaleidoscope layer that is trained end-to-end together with the Bi-LSTM. The original pipeline and our
modified kaleidoscope version are depicted in Figure 2.

The computation of MFSC features involves a series of painstakingly hand-designed steps (further described
in Appendix B.1), each involving their own hyperparameters: (i) the waveform is framed (split into chunks),
(ii) the waveform is dithered (noise is added), (iii) pre-emphasis is applied, (iv) the Hamming window is
applied, (v) the FFT is applied and the power spectrum is computed, (vi) the result is mapped to the
mel scale (which involves applying a particular linear transformation and then taking the logarithm of the
result), (vii) cepstral mean and variance normalization is applied. We replace the last six steps (ii-vii) of this
featurization process with a learnable kaleidoscope layer; specifically, after windowing, we multiply the input
by a K-matrix, and then compute the logarithm of the power spectrum; the output is fed into the Bi-LSTM
model.

3.1.2 Replacing CNN channel shuffle

We evaluate how K-matrices can improve the quality of hand-crafted, lightweight architectures for computer
vision tasks, without the need for hand-tuning. We select ShuffleNet (Zhang et al., 2018), which is a
state-of-the-art lightweight CNN architecture that uses a manually designed “channel shuffle” permutation
matrix to improve performance. By replacing this fixed permutation with a learnable K-matrix, we achieve
up to 5% further improvement in classification accuracy, without hand-tuned components and with a modest
space penalty of up to 10%. Results are given in Table 2.

Table 2: Top-1 classification accuracy of ShuffleNet on ImageNet validation set (parameter counts in
parentheses). We compare our approach (col. 3) with our reimplementation of ‘vanilla’ ShuffleNet (col. 1) and
a recent approach based on the Hadamard transform (col. 2).4 We report results for different network width
multipliers (# channels). The last column shows the differences in accuracy and parameter count between
our approach and vanilla ShuffleNet; using a learnable K-matrix in place of each fixed permutation (shuffle)
or Hadamard matrix improves accuracy by up to 5%.

Shuffle Hadamard Kaleidoscope (K.) K. vs. Shuffle

0.25 ShuffleNet g8 44.1% (0.46M) 43.9% (0.46M) 49.2% (0.51M) +5.0% (+0.05M)
0.5 ShuffleNet g8 57.1% (1.0M) 56.2% (1.0M) 59.5% (1.1M) +2.4% (+0.1M)
1.0 ShuffleNet g8 65.3% (2.5M) 65.0% (2.5M) 66.5% (2.8M) +1.2% (+0.2M)

Grouped convolution (Krizhevsky et al., 2012) is often used to reduce parameter count and speed up
inference compared to standard convolution, but, by default, channels in different groups cannot exchange
information. To remedy this, ShuffleNet uses a permutation matrix to shuffle the channels after each grouped
convolution. Zhao et al. (2019) propose to instead use the Hadamard transform before and after each grouped
convolution to mix the channels. In place of these hand-engineered solutions, we use a K-matrix before
and after each grouped convolution, and learn these end-to-end together with the rest of the network. As

4Despite our best effort, we were unable to reproduce the original accuracy reported by Zhang et al. (2018), a problem
similarly faced by Zhao et al. (2019) and Lyu et al. (2019). Zhao et al. (2019) use block Hadamard transform and pre-activation
ShuffleNet, so their results are not directly comparable with those reported here.

7

shown in Table 2, across a range of sizes, replacing the channel shuffles with K-matrices results in improved
performance at comparable parameter counts.

3.2 Learning a latent permutation
We show that K-matrices can be used in a challenging task for which existing classes of structured linear
maps have not been found suitable. We investigate the problem of image classification on a permuted image
dataset (Permuted CIFAR-10). This problem is challenging due to the discrete nature of learning the latent
permutation of the dataset; we present a differentiable relaxation for this using a K-matrix as a key component.
Results are presented in Table 3; compared to methods that do not have a permutation learning step, our
approach gets 9 points higher accuracy (84.4% to 93.6%), coming within 2 points of the accuracy on the
un-permuted dataset (94.9%).

Table 3: Permuted CIFAR-10 validation set classification accuracy (%). Our kaleidoscope layer is able to
nearly perfectly recover the latent structure, allowing a downstream CNN to approach the accuracy of a
standard ResNet18 on the unpermuted dataset (last column).

Model FC RNN CNN Dense + CNN K + CNN Unpermuted

Accuracy 61.2 57.8 73.7 84.4 93.6 94.9

In this task, we use a permuted image classification dataset (Permuted CIFAR-10), wherein a fixed global
permutation is applied to the pixels of every image in the original input set. Typically, only fully-connected
(FC) and recurrent models are applied to such datasets (Le et al., 2015), because the permutation destroys
locality in the image, presenting a difficulty for CNNs. However, CNNs are much better-suited for standard
image tasks. We thus expect that learning the permutation and then applying a standard CNN should
outperform these baselines. As mentioned in Section 2, the kaleidoscope hierarchy provides a nearly tight
parameterization of permutations; this makes them a natural fit for the permutation learning step.

Experimentally, we use a K-matrix to represent a distribution over permutations, which converges to
a single permutation at the end of training. The correct latent structure is learned by applying samples
from this distribution to the permuted training images, and minimizing an auxiliary smoothness-based loss
that encourages the reconstructed images to be more “natural” (i.e. vary smoothly pixel-to-pixel). The
learned permutation is evaluated by training a ResNet18 with the K-matrix permutation layer inserted at the
beginning. Full details of our approach are provided in Appendix B.3.

In Table 3, we compare our approach to a ResNet18 without this extra K-matrix layer, a ResNet18 with
an extra dense matrix at the beginning instead of a K-matrix, and other baselines. As generic representations
such as unstructured matrices do not have the requisite properties to fit in the pipeline, these baselines fail
to effectively learn the latent permutation. We emphasize that a K-matrix provides this ability to recover
latent structure despite not being specialized for permutations. Figure 3 describes the pipeline and displays
examples of permuted and unpermuted images.

3.3 Speeding up Inference
We evaluate the inference speed benefit of using K-matrices on a real language translation model. We choose
the state-of-the-art DynamicConv Transformer translation model (Wu et al., 2019), which offers 20% inference
speedup over the standard Transformer model, and replace dense matrices in the decoder’s linear layers with
K-matrices, which leads to a further 36% inference speedup (Table 4).

As outlined in Section 2.3, K-matrices admit a simple and fast O(n log n) matrix-vector multiplication
algorithm. We provide fast implementations of this algorithm in C++ and CUDA, with an interface to
PyTorch (Paszke et al., 2017), and use this implementation in our experiments.

We use K-matrices to replace all the linear layers in the decoder of DynamicConv (since 90% of inference
time is spent in the decoder). As shown in Table 4, on the IWSLT-14 German-English translation task,
this yields a 25% smaller model with 36% faster inference time on CPU, at the cost of 1.0 drop in BLEU
score.5 (Our model also nearly matches the state-of-the-art BLEU performance of 2 years ago obtained by the

5BLEU score is a measure of translation quality; higher is better.

8

Figure 3: (a) (Left) Schematic describing permutation learning approach. The inputs are multiplied by a
K-matrix and then fed into a CNN, from which the classification loss is computed. Separately, the input
is permuted by a permutation matrix sampled from the distribution described by the K-matrix, and a
“smoothness” loss (Rudin et al., 1992) is computed from the result, as described in Appendix B.3. (b) (Right)
Left panel: original (unpermuted) example images. Center panel: the permuted versions. Right panel: these
images after then applying the permutation recovered by the K-matrix. The K-matrix is able to nearly
unscramble the images into their unpermuted versions.

Table 4: Inference speed on the IWSLT-14 German-English translation task (test set). Using K-matrices
instead of dense matrices in the DynamicConv decoder linear layers results in 36% faster inference speed
(measured on a single-threaded CPU with a batch size of 1 and beam size of 1).

Model # params BLEU Sentences/sec Tokens/sec

Transformer (Vaswani et al., 2017) 43M 34.4 3.0 66.4
DynamicConv Transformer (Wu et al., 2019) 39M 35.2 3.6 80.2
DynamicConv Transformer w/ K-matrices (ours) 30M 34.2 4.9 103.4

Transformer model (Vaswani et al., 2017), despite being over 60% faster for inference than the Transformer.)
The majority (55%) of inference time is spent in matrix-vector multiplication; our implementation of K-
matrix-vector multiplication is about 2 times faster than the optimized implementation of dense matrix-vector
multiplication in the Intel MKL library. Direct comparisons of K-matrix multiplication with this and other
highly-optimized routines such as the FFT are further detailed in Appendix C.

4 Conclusion
We address the problem of having to manually choose among the numerous classes of structured linear maps
by proposing the universal (expressive, efficient, and learnable) family of kaleidoscope matrices. We prove that
K-matrices can represent any structured linear maps with near-optimal space and time complexity. Empirical
validations suggest that K-matrices are a promising and flexible way to employ structure in modern ML;
they can be used to reduce the need for hand-engineering, capture challenging latent structure, and improve
efficiency in models. We are excited about future work on further hardware-optimized implementations of
K-matrices, to fully realize the size and speed benefits of structured matrices on a broad array of real-world
applications.

Acknowledgments

We thank Avner May and Jian Zhang for their helpful feedback.
We gratefully acknowledge the support of DARPA under Nos. FA87501720095 (D3M), FA86501827865

(SDH), and FA86501827882 (ASED); NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No. N000141712266
(Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, the Okawa
Foundation, American Family Insurance, Google Cloud, Swiss Re, and members of the Stanford DAWN

9

project: Teradata, Facebook, Google, Ant Financial, NEC, VMWare, and Infosys. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views, policies, or endorsements, either expressed or
implied, of DARPA, NIH, ONR, or the U.S. Government. Matthew Eichhorn and Atri Rudra’s research is
supported by NSF grant CCF-1763481.

References
Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In Interna-
tional Conference on Machine Learning, pp. 1120–1128, 2016.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Peter L. Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise polynomial
networks. In Advances in Neural Information Processing Systems, pp. 190–196, 1999.

Václav E Benes. Permutation groups, complexes, and rearrangeable connecting networks. Bell System
Technical Journal, 43(4):1619–1640, 1964.

Václav E Benes. Mathematical theory of connecting networks and telephone traffic. Academic press, 1965.

Peter Bürgisser, Michael Clausen, and Mohammad A. Shokrollahi. Algebraic complexity theory, volume 315.
Springer Science & Business Media, 2013.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Krzysztof Choromanski, Mark Rowland, Wenyu Chen, and Adrian Weller. Unifying orthogonal Monte Carlo
methods. In International Conference on Machine Learning, pp. 1203–1212, 2019.

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2Letter: an end-to-end ConvNet-based
speech recognition system. arXiv preprint arXiv:1609.03193, 2016.

James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. The fast fourier transform and its applications.
IEEE Transactions on Education, 12(1), 1969.

William James Dally and Brian Patrick Towles. Principles and practices of interconnection networks. Elsevier,
2004.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for linear
transforms using butterfly factorizations. In The International Conference on Machine Learning (ICML),
2019.

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged progress
in structured dense matrix vector multiplication. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1060–1079. SIAM, 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

J. R. Driscoll, D. M. Healy, Jr., and D. N. Rockmore. Fast discrete polynomial transforms with applications
to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):1066–1099, August 1997. ISSN
0097-5397. doi: 10.1137/S0097539792240121. URL http://dx.doi.org/10.1137/S0097539792240121.

Utku Evci, Trevor Gale, Jacob Menick, Pablo S. Castro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. arXiv preprint arXiv:1911.11134, 2019.

10

http://dx.doi.org/10.1137/S0097539792240121

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Hormozd Gahvari, Mark Hoemmen, James Demmel, and Katherine Yelick. Benchmarking sparse matrix-vector
multiply in five minutes. In SPEC Benchmark Workshop, 2007.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren,
and Victor Zue. TIMIT acoustic-phonetic continuous speech corpus LDC93S1. Web Download. Philadelphia:
Linguistic Data Consortium, 1993.

Pegah Ghahremani, Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur. Acoustic modelling from the
signal domain using CNNs. In Interspeech, pp. 3434–3438, 2016.

Robert M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends® in Communications
and Information Theory, 2(3):155–239, 2006.

Scott Gray, Alec Radford, and Diederik P. Kingma. GPU kernels for block-sparse weights. arXiv preprint
arXiv:1711.09224, 2017.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing
Wang, Li Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. Recent advances in convolutional neural
networks. Pattern Recognition, 77:354–377, 2018.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In International Conference on Learning Representations
(ICLR), 2016.

Fredric J. Harris. On the use of windows for harmonic analysis with the discrete fourier transform. In
Proceedings of the IEEE, 1978.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for piecewise
linear neural networks. In Satyen Kale and Ohad Shamir (eds.), Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pp. 1064–1068, Amsterdam,
Netherlands, 07–10 Jul 2017. PMLR. URL http://proceedings.mlr.press/v65/harvey17a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential weights. Journal of
Machine Learning Research, 10(Jul):1705–1736, 2009.

Alston S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM, 5(4):339–342, October
1958. ISSN 0004-5411. doi: 10.1145/320941.320947. URL http://doi.acm.org/10.1145/320941.320947.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and Marin
Soljacić. Tunable efficient unitary neural networks (EUNN) and their application to RNNs. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 1733–1741. JMLR. org, 2017.

Dan Jurafsky and James H. Martin. Speech and language processing, volume 3. Pearson London, 2014.

Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear equations.
Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

Donald Ervin Knuth. The art of computer programming, Volume 3: Sorting and Searching. Pearson Education,
1997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105, 2012.

Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood-computing hilbert space expansions in loglinear
time. In International Conference on Machine Learning, pp. 244–252, 2013.

11

http://proceedings.mlr.press/v65/harvey17a.html
http://doi.acm.org/10.1145/320941.320947

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1):
6765–6816, 2017.

Yingzhou Li, Haizhao Yang, Eileen R. Martin, Kenneth L. Ho, and Lexing Ying. Butterfly factorization.
Multiscale Modeling & Simulation, 13(2):714–732, 2015.

Yingzhou Li, Haizhao Yang, and Lexing Ying. Multidimensional butterfly factorization. Applied and
Computational Harmonic Analysis, 44(3):737–758, 2018.

Fu-Hua Liu, Richard M. Stern, Xuedong Huang, and Alejandro Acero. Efficient cepstral normalization for
robust speech recognition. In ARPA Workshop on Human Language Technology, 1993.

Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin. Autoshufflenet: Learning permutation matrices via
an exact lipschitz continuous penalty in deep convolutional neural networks. arXiv preprint arXiv:1901.08624,
2019.

J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(1):27–34, February 1980. ISSN 0096-3518. doi: 10.1109/TASSP.1980.1163351.

Michael Mathieu and Yann LeCun. Fast approximation of rotations and Hessians matrices. arXiv preprint
arXiv:1404.7195, 2014.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations with
Gumbel-Sinkhorn networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Byt3oJ-0W.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal parametrisa-
tion of recurrent neural networks using householder reflections. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 2401–2409. JMLR. org, 2017.

Decebal C. Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.
Nature Communications, 9, 2018.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. ACDC: a structured efficient
linear layer. In International Conference on Learning Representations, 2016.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In The International Conference on Machine Learning (ICML), 2019.

Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets. Quadrature-based features
for kernel approximation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 9165–9174. Curran Associates,
Inc., 2018.

Vadim Olshevsky and Mohammad Amin Shokrollahi. Matrix-vector product for confluent Cauchy-like
matrices with application to confluent rational interpolation. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pp. 573–581, 2000. doi:
10.1145/335305.335380. URL http://doi.acm.org/10.1145/335305.335380.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019:
Demonstrations, 2019.

Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. Estimating phoneme class conditional probabili-
ties from raw speech signal using convolutional neural networks. In Interspeech, 2013.

12

https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=Byt3oJ-0W
http://doi.acm.org/10.1145/335305.335380

Kuldip Paliwal. On the use of filter-bank energies as features for robust speech recognition. In International
Symposium on Signal Processing and its Applications (ISSPA), 1999.

Victor Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer-Verlag New
York, Inc., New York, NY, USA, 2001. ISBN 0-8176-4240-4.

Victor M. Panaretos and Shahin Tavakoli. Fourier analysis of stationary time series in function space. The
Annals of Statistics, 41(2):568–603, 2013.

D. Stott Parker. Random butterfly transformations with applications in computational linear algebra.
Technical report, UCLA, 1995.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In Advances in
Neural Information Processing Systems (NeurIPS) - Autodiff Workshop, 2017.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely.
The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding. IEEE Signal Processing Society, 2011.

Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform with sincnet. In IEEE Workshop
on Spoken Language Technology, 2018.

Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. Light gated recurrent units for
speech recognition. In IEEE Transactions on Emerging Topics in Computational Intelligence, volume 2,
pp. 92–102, 2018.

Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio. The PyTorch-Kaldi speech recognition toolkit. In
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.

Vladimir Rokhlin and Mark Tygert. Fast algorithms for spherical harmonic expansions. SIAM Journal on
Scientific Computing, 27(6):1903–1928, 2006.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-rank
matrix factorization for deep neural network training with high-dimensional output targets. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6655–6659. IEEE,
2013.

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, and Oriol Vinyals. Learning the speech
front-end with raw waveform CLDNNs. In Interspeech, 2015.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. arXiv preprint arXiv:1907.10597,
2019.

Vikas Sindhwani, Tara N. Sainath, and Sanjiv Kumar. Structured transforms for small-footprint deep learning.
In Advances in Neural Information Processing Systems, pp. 3088–3096, 2015.

S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the psychological magnitude
pitch. Journal of the Acoustic Society of America, 8(3), 1937.

13

G. Szegö. Orthogonal Polynomials. Number v. 23 in American Mathematical Society colloquium publications.
American Mathematical Society, 1967. ISBN 9780821889527. URL https://books.google.com/books?
id=3hcW8HBh7gsC.

Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed transforms
with low displacement rank. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Trieu H. Trinh, Andrew M Dai, Minh-Thang Luong, and Quoc V. Le. Learning longer-term dependencies in
RNNs with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018.

Joseph Tsidulko. Google showcases on-device artificial intelligence breakthroughs at I/O. CRN, 2019.

Mark Tygert. Fast algorithms for spherical harmonic expansions, ii. Journal of Computational Physics, 227
(8):4260–4279, 2008.

Mark Tygert. Fast algorithms for spherical harmonic expansions, iii. Journal of Computational Physics, 229
(18):6181–6192, 2010a.

Mark Tygert. Recurrence relations and fast algorithms. Applied and Computational Harmonic Analysis, 28
(1):121–128, 2010b.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity unitary
recurrent neural networks. In Advances in Neural Information Processing Systems, pp. 4880–4888, 2016.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with lightweight
and dynamic convolutions. In International Conference on Learning Representations (ICLR), 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1492–1500, 2017.

Felix X. Yu, Sanjiv Kumar, Henry A. Rowley, and Shih-Fu Chang. Compact nonlinear maps and circulant
extensions. CoRR, abs/1503.03893, 2015.

Felix X. Yu, Ananda T. Suresh, Krzysztof M. Choromanski, Daniel N. Holtmann-Rice, and Sanjiv Kumar.
Orthogonal random features. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 29, pp. 1975–1983. Curran Associates, Inc., 2016.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schatz, Gabriel Synnaeve, and Emmanuel
Dupoux. Learning filterbanks from raw speech for phone recognition. In IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6848–6856, 2018.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Building efficient deep neural
networks with unitary group convolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 11303–11312, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

14

https://books.google.com/books?id=3hcW8HBh7gsC
https://books.google.com/books?id=3hcW8HBh7gsC

A Related Work

A.1 Structured matrices in machine learning
Structured linear maps such as the DFT, the Hadamard transform and convolution are a workhorse of
machine learning, with diverse applications including data preprocessing, random projection, featurization,
and model compression. For example, the DFT is a crucial step in the standard filter bank speech pre-
processing pipeline (Jurafsky & Martin, 2014), and is commonly used when dealing with time series data
in general (Panaretos & Tavakoli, 2013). Fast random projection and kernel approximation methods rely
on the fast Hadamard transform (Le et al., 2013; Yu et al., 2016) and convolution (Yu et al., 2015), and
convolution is a critical component of modern image processing architectures (Krizhevsky et al., 2012) as well
as being useful in speech recognition (Zeghidour et al., 2018) and natural language processing (Wu et al.,
2019). Large learnable classes of structured matrices such as Toeplitz-like matrices (Sindhwani et al., 2015)
and low-displacement rank (LDR) matrices (Thomas et al., 2018) have been used for model compression.
However, despite their theoretical speedup, these structured matrix classes lack efficient implementations,
especially on GPUs. Therefore, their use has largely been confined to small models (e.g. single hidden layer
neural nets) and small datasets (e.g. CIFAR-10).

Butterfly matrices encode the recursive divide-and-conquer structure of the fast Fourier transform
(FFT) algorithm. They were first used in numerical linear algebra for fast preconditioning (Parker, 1995).
The butterfly factorization is then generalized to encompass complementary low-rank matrices commonly
encountered in solving differential and integral equations (Rokhlin & Tygert, 2006; Tygert, 2008, 2010b,a;
Li et al., 2015, 2018). In machine learning, butterfly matrices have been use to approximate the Hessian
for fast optimization (Mathieu & LeCun, 2014), and to perform fast random projection (Jing et al., 2017;
Munkhoeva et al., 2018; Choromanski et al., 2019). Dao et al. (2019) show that butterfly matrices can be
used to learn fast algorithms for discrete transforms such as the Fourier transform, cosine/sine transform,
Hadamard transform, and convolution.

A.2 Sparse matrices
Several classes of structured linear transforms are ubiquitous in modern deep learning architectures; particularly
widespread examples include convolution and multiheaded attention. Recently, attempts to impose sparsity
on the neural network weights have been gaining traction. State-of-the art approaches of this type typically
accomplish this by pruning small weights (either gradually during training (Zhu & Gupta, 2017), or post-
training (Han et al., 2016)) or by training a dense network and then identifying “winning lottery tickets”—sparse
subnetworks which may then be retrained from scratch with appropriate initialization (Frankle & Carbin,
2019). Importantly, these approaches start from a dense network, and therefore training is expensive. There
is also a more nascent line of work that aims to train unstructured sparse neural networks directly (Mocanu
et al., 2018; Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019; Evci et al., 2019). These approaches
maintain a constant network sparsity level throughout training, and use heuristics to evolve the sparsity
pattern during training. One drawback is that the indices of the nonzero entries need to be stored in addition
to the entry values themselves, which increases the memory required to store the sparse weight tensors.
Another drawback is that these approaches to learn the sparsity pattern are based on intricate heuristics,
which can be brittle. We note that these heuristic sparsification techniques could potentially be combined
with our approach, to further sparsify the K-matrix factors.

A.3 Speech recognition from raw audio
Numerous works focus on the problem of speech recognition from raw audio input, i.e. without manual
featurization. SincNet (Ravanelli & Bengio, 2018) is a CNN-based architecture parameterized with sinc
functions, designed so that the first convolutional layer imitates a band-pass filter. Zeghidour et al. (2018)
formulate a learnable version of a filter bank featurization; their filters are initialized as an approximation
of MFSC features and then fine-tuned jointly with the rest of the model. Sainath et al. (2015) proposed a
powerful combined convolutional LSTM (CLDNN)-based model for learning from raw audio, using a large
amount of training data. The WaveNet generative architecture (van den Oord et al., 2016), based on dilated
convolutions, has been adapted to speech recognition and can be trained on raw audio. Other approaches

15

that can learn from raw audio can be found in (Palaz et al., 2013; Collobert et al., 2016; Ghahremani et al.,
2016). To our knowledge, the 14.6% PER achieved by our kaleidoscope + LSTM model on the TIMIT test
set is the lowest error rate obtained by a model trained directly on the raw audio.

A.4 Learning permutations
Permutation matrices find use in tasks such as matching and sorting (among many others). Techniques
to obtain posterior distributions over permutations have been developed, such as the exponential weights
algorithm (Helmbold & Warmuth, 2009) and the Gumbel-Sinkhorn network (Mena et al., 2018).

Classifying images with permuted pixels is a standard task to benchmark the ability of RNNs to learn
long range dependencies. Le et al. (2015) propose the Permuted MNIST task, in which the model has to
classify digit images with all the pixels permuted. Many new RNN architectures, with unitary or orthogonal
weight matrices to avoid gradient explosion or vanishing, have been proposed and tested on this task (Le
et al., 2015; Arjovsky et al., 2016; Wisdom et al., 2016; Mhammedi et al., 2017; Trinh et al., 2018). Standard
gated RNN architectures such as LSTM and GRU have also been found to be competitive with these new
RNN architectures on this task (Bai et al., 2018).

B Additional Experimental Details

B.1 Speech preprocessing
In this section, we fully describe our settings and procedures for the speech preprocessing experiments in
Section 3.1.1, and present additional auxiliary baselines and results.

B.1.1 Experimental setup

We evaluate our speech recognition models on the TIMIT speech corpus (Garofolo et al., 1993), a standard
benchmark for speech recognition. The input is audio (16-bit, 16 kHz .wav format), and the target is the
transcription into a sequence of phonemes (units of spoken sound). Our evaluation metric is the phoneme
error rate (PER) between the true phoneme sequence and the phoneme sequence predicted by our model.
We use PyTorch (Paszke et al., 2017), the Kaldi speech recognition toolkit (Povey et al., 2011), and the
PyTorch-Kaldi toolkit (Ravanelli et al., 2019) for developing PyTorch speech recognition models for all our
experiments and evaluations.

B.1.2 Model and evaluation

Our baseline Bi-LSTM architecture is taken from the PyTorch-Kaldi repository.6 This is a strong baseline
model that, to the best of our knowledge, matches state-of-the-art performance for models that use a single
type of input featurization (Ravanelli et al., 2019). The original Bi-LSTM model takes as input filter bank
features. These are computed as follows: (i) the waveform is framed (split into chunks of 25 ms each that
overlap by 10 ms each), (ii) the waveform is dithered (zero-mean Gaussian random noise is added), (iii)
pre-emphasis is applied to amplify high frequencies, (iv) the Hamming window function (Harris, 1978) is
applied, (v) the FFT is applied, and the power spectrum of the resulting (complex-valued) output is computed,
(vi) the power spectrum (which has dimension 512) is mapped to the “mel scale” (which is a scale intended to
mimic human auditory perception (Stevens et al., 1937)) by multiplication with a specific banded matrix of
dimension 512× 23, and the entrywise logarithm of the output is taken (the 23 outputs are called the filters),
and (vii) cepstral mean and variance normalization (Liu et al., 1993) is applied. Numerical hyperparameters
of this procedure include the dither noise scale, the pre-emphasis coefficient, the Hamming window size, the
number of mel filters, and more; we kept all these the same as the Kaldi/PyTorch-Kaldi defaults.

In contrast, our “K-matrix version” of the model takes as input the raw waveform, split into chunks the
same way as before but with no normalization, dithering, or other preprocessing, which is then fed into
a complex-valued kaleidoscope [(BB∗)2] matrix. Similarly to the nonlinear steps in computing filter bank
features, the logarithm of the power spectrum of the output (which has dimension 512) is then computed.

6This open-source repository can be found at https://github.com/mravanelli/pytorch-kaldi.

16

https://github.com/mravanelli/pytorch-kaldi

This output is fed into the Bi-LSTM; the Bi-LSTM and kaleidoscope layer are trained together in standard
end-to-end fashion. The Bi-LSTM architecture is not modified aside from changing the input dimension from
23 to 512; this (along with the ≈ 75K parameters in the kaleidoscope layer itself) results in approximately
a 1.1M increase in the total number of parameters compared to the model that takes in MFSC features
(a modest 8% relative increase). Total training time for our kaleidoscope-based architecture is 7% greater
than that required for the model that uses MFSC features, not counting the time required to precompute
the MFSC features; the FLOPs for inference-time are approximately 15% greater (mostly due to the larger
dimension of the input to the Bi-LSTM; the kaleidoscope layer accounts for less than 0.5% of the total
FLOPs).

As baselines, we also compare to inserting other types of linear transformations before the Bi-LSTM:
fixed linear transformations (such as the fixed FFT, or no transform at all [i.e. the identity]), other
trainable structured layers (low-rank, circulant, and sparse [using the sparse training algorithm of Dettmers &
Zettlemoyer (2019)]), and a trainable unstructured (dense) linear layer. The kaleidoscope layer performs the
best out of all such approaches. The fact that it outperforms even a dense linear layer with more parameters
is particularly notable, as it suggests that the structural bias imposed by the K-matrix representation is
beneficial for performance on this task. Full results are given in Table 5.

Table 5: TIMIT phoneme error rate (PER%, ± standard deviation across 5 random seeds).

Model Test set PER% # Parameters

Low rank + LSTM 23.6± 0.9 15.5M
Sparse + LSTM 21.7± 0.9 15.5M
Circulant + LSTM 23.9± 0.9 15.4M
Dense + LSTM 15.4± 0.6 15.9M
FFT + LSTM 15.7± 0.1 15.4M
Identity + LSTM 20.7± 0.3 15.4M
Kaleidoscope + LSTM 14.6± 0.3 15.4M
MFSC features + LSTM 14.2± 0.2 14.3M

SincNet (Ravanelli et al.,
2019)

17.2 10.0M

LiGRU (Ravanelli et al., 2018) 13.8 12.3M

In our experiments, we grid search the initial learning rate for the “preprocessing layer” (if applicable) in
{5e-5, 1e-4, 2e-4, 4e-4, 8e-4, 1.6e-3}, and fix all other hyperparameters (including the initial learning rates for
the other parts of the network) to their default values in the PyTorch-Kaldi repository. The model and any
preprocessing layers are trained end-to-end with the RMSProp optimizer for 24 epochs (as per the defaults in
PyTorch-Kaldi). For each model, we use the validation set to select the best preprocessing learning rate, while
the final error rates are reported on the separate held-out test set. For all structured matrix baselines except
circulant (which always has n parameters for an n× n matrix), the number of parameters in the structured
matrices is set to equal the number of parameters in the butterfly layer, while the unconstrained matrix is
simply a standard dense complex-valued square matrix. For all experiments with a trainable “preprocessing
layer,” we initialize the preprocessing matrix to represent the FFT (or approximate it as closely as possible
[i.e. minimize the Frobenius error to the true FFT matrix], in the case of low-rank, sparse, and circulant),
which we found to outperform random initialization.

B.1.3 Extension: Combining MFSC and kaleidoscope

As an additional experiment, we sought to investigate whether combining the hand-engineered MFSC
featurization pipeline and a learnable kaleidoscope layer (instead of replacing the former with the latter) could
lead to accuracy gains. Specifically, in this experiment we first used the standard filter bank featurization
pipeline described above, and trained end-to-end as usual. Then, we replaced the FFT step with a K-matrix
initialized to the FFT, and made the weights of the Hamming window function and the mel filter bank
matrix learnable as well (similarly to (Zeghidour et al., 2018)). We fine-tuned the resulting architecture for

17

an additional 10 epochs. The final test PER% attained by this “hybrid” model is 14.0± 0.3; the model has
14.4M parameters—a negligible increase over the 14.3M in the original architecture. Thus, by combining
the manually encoded domain knowledge in the filter bank featurization and allowing this structure to be
learnable rather than fixed, we are able to nearly match the state-of-the-art 13.8% accuracy on TIMIT. While
this “hybrid” model certainly involves some hand-engineering, the state-of-the-art results use a concatenation
of three different speech audio featurizations—MFSC, MFCC, and fMLLR—as the neural network input,
along with a customized RNN architecture (LiGRU) specifically designed for speech recognition, and thus
require a more complicated pipeline that is arguably even more hand-crafted.

B.2 Replacing CNN channel shuffle
B.2.1 Model architectures

ShuffleNet is a convolutional neural network with residual (skip) connections that uses a permutation matrix
to shuffle the channels after each grouped 1x1 convolution, sending the i-th channel to the (i mod g)-th group,
where g is the total number of groups. The architecture for each residual block in ShuffleNet is: 1x1 group
conv → Batch norm, ReLU → Permutation → 3x3 depthwise conv → Batch norm → 1x1 group conv. The
permutation is fixed.

Zhao et al. (2019) propose to instead use the Hadamard transform before and after each grouped
1x1 convolution to mix the channels. Note that the Hadamard transforms are placed before the batch
normalization and ReLU layer (unlike the permutation matrix in the original ShuffleNet design). In particular,
the architecture for each block is: Hadamard → 1x1 group conv → Hadamard → Batch norm, ReLU → 3x3
depthwise conv → Batch norm → 1x1 group conv. The Hadamard transform is fixed.

In our architecture, we use a kaleidoscope matrix in OBB (product of an orthogonal butterfly matrix, a
diagonal matrix, and the transpose of another butterfly matrix) before and after each grouped 1x1 convolution.
We place the second K-matrix after the batch norm and ReLU, to more closely mimic the original ShuffleNet
design. The structure for each block is: K-matrix → 1x1 group conv → Batch norm, ReLU → K-matrix →
3x3 depthwise conv → Batch norm → 1x1 group conv. The K-matrices are trained along with the rest of the
network, rather than being fixed.

B.2.2 Experimental setup

We evaluate the CNN architectures on the image classification task of the standard ImageNet dataset (Rus-
sakovsky et al., 2015). We use the standard data augmentation, training, and evaluation pipeline as in (Xie
et al., 2017). We train with SGD on 8 GPUs for 90 epochs, with a total batch size of 2048 and initial
learning rate 0.8. For the 1.0 ShuffleNet g8 architecture, we reduce the total batch size to 1792 to fit into
GPU memory, and correspondingly linearly scale the initial learning rate to 0.7. Other hyperparameters (e.g.
learning rate schedule, weight decay, etc.) are kept the same as in the ShuffleNet paper (Zhang et al., 2018).
We use the training script from NVIDIA’s deep learning examples repository.7

B.2.3 Additional results

In Table 6, we report top-5 classification accuracy on ImageNet, to complement the top-1 accuracies in
Table 2.

In each setting, the total training time of our K-matrix approach is within 20% of the total training time
of vanilla ShuffleNet.

In Figure 4, we plot the loss and accuracy on the training set and validation set when we train 1.0
ShuffleNet g8, with either a fixed permutation (Shuffle) or a K-matrix for channel shuffling. Even though
each K-matrix is a product of multiple (sparse) matrices, the model with K-matrices takes about the same
number of training steps to converge as the baseline model does. One possible reason is that we constrain the
K-matrices to be orthogonal (Section 2.4), thus avoiding vanishing or exploding gradients.

7https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5

18

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5

Table 6: Top-5 classification accuracy of ShuffleNet on ImageNet validation set. We report results for different
network width multipliers (number of channels), and for different kinds of matrices used for channel mixing.
Using a learnable K-matrix in place of each fixed permutation (shuffle) or Hadamard matrix improves top-5
accuracy by up to 4.8%. Parameter counts are the same as in Table 2.

Shuffle Hadamard Kaleidoscope (K.) K. vs. Shuffle

0.25 ShuffleNet g8 68.6% 68.4% 73.4% +4.8%
0.5 ShuffleNet g8 79.9% 79.2% 81.7% +1.8%
1.0 ShuffleNet g8 86.0% 85.8% 86.8% +0.8%

0 20 40 60 80
Epoch

2

3

4

5

6

Lo
ss

Shuffle train loss
Kaleidoscope train loss
Shuffle val loss
Kaleidoscope val loss

(a) Train and validation loss

0 20 40 60 80
Epoch

10

20

30

40

50

60

70

To
p-

1
ac

cu
ra

cy
Shuffle train top-1 accuracy
Kaleidoscope train top-1 accuracy
Shuffle val top-1 accuracy
Kaleidoscope val top-1 accuracy

(b) Train and validation accuracy

Figure 4: Loss and top-1 accuracy of 1.0 ShuffleNet g8 with either a fixed permutation (Shuffle) or a K-matrix
for channel shuffling. The K-matrix model takes about the same number of training steps to converge as does
the baseline model.

B.3 Learning permutations
B.3.1 Dataset

The permuted CIFAR-10 dataset is constructed by applying a fixed permutation to every input. We choose
to use the 2-D bit-reversal permutation,8 i.e., the bit reversal permutation on 32 elements is applied to the
rows and to the columns. This permutation was chosen because it is locality-destroying: if two indices i, j
are close, they must differ in a lower-order bit, so that the bit-reversed indices i′, j′ are far. This makes it a
particularly challenging test case for architectures that rely on spatial locality such as “vanilla” CNNs.

B.3.2 Model and Training

We describe the model architectures used in Section 3.1 (those reported in Table 3).

Our model (K + CNN) The model represents a fixed permutation P , parametrized as a K-matrix,
to learn to recover the true permutation, followed by a standard ResNet18 architecture (He et al., 2016).
Because of the simple decomposable nature of the butterfly factors (Section 2.1), our parameterization is
easily extensible with additional techniques:

8The bit-reversal permutation reverses the order of the bits in the binary representation of the indices. For example, indices
[0, 1, ..., 7] with binary representations [000, 001, ..., 111] are mapped to [000, 100, ..., 111], which corresponds to [0, 4, 2, 6, 1, 5,
3, 7]

19

(i) We constrain each butterfly factor matrix in the K-matrix to be doubly-stochastic. For example, each

2× 2 block in the butterfly factor matrix of block size 2 has the form
[

a 1− a
1− a a

]
, where a ∈ [0, 1].

We treat this block as a distribution over permutations, generating the identity
[
1 0
0 1

]
with probability

a and the swap
[
0 1
1 0

]
with probability 1 − a. Butterfly factor matrices with larger block sizes are

constrained to be doubly-stochastic in a similar manner. In this way, a permutation is sampled for
each butterfly factor matrix, and these permutations are composed to get the final permutation that is
applied to the image.

(ii) For each minibatch, the examples Px by applying permutation samples on the (permuted) inputs are
fed into an additional unsupervised reconstruction loss∑

0≤i,j<n

∥∥∥∥[(Px)[i+ 1, j]− (Px)[i, j]
(Px)[i, j + 1]− (Px)[i, j]

]∥∥∥∥
2

(1)

measuring total variation smoothness of the de-noised inputs. Such loss functions are often used in
image denoising (Rudin et al., 1992). A final regularization loss was placed on the entropy of P , which
was annealed over time to encourage P to converge toward a sharper doubly-stochastic matrix (in other
words, a permutation).

The model is trained with just the reconstruction loss to convergence before the standard ResNet is
trained on top.

These techniques are applicable to the K-matrix as well as specialized methods for representing permutations
such as Gumbel-Sinkhorn (Mena et al., 2018) and are important for recovering the true permutation. However,
they are not applicable to a general linear layer, which showcases the flexibility of K-matrices for representing
generic structure despite not being specially tailored for this task. We also remark that other classes of
structured linear maps such as low-rank, circulant, and so on, are even less suited to this task than dense
matrices, as they are incapable of representing all permutations.

Baseline architectures

1. Fully connected (FC): This is a 3-layer MLP, with hidden size 1024 and ReLU nonlinearity in-between
the fully connected layers.

2. Recurrent neural network (RNN): We use a gated recurrent unit (GRU) model (Cho et al., 2014), with
hidden size 1024. Many RNN architectures have been proposed to capture long-range dependency on
permuted image dataset such as Permuted MNIST (Arjovsky et al., 2016). Standard gated architectures
such as LSTM and GRU have shown competitive performance on the Permuted MNIST dataset, and
we choose GRU as a baseline since it has been reported to slightly outperform LSTM (Bai et al., 2018).

3. CNN: We use the standard ResNet18 architecture, adapted to smaller image size of the CIFAR-10
dataset (changing stride from 2 to 1 of the first convolutional layer, and removing max-pooling layer
that follows).

4. Dense + CNN: We add an additional linear layer (i.e. a dense matrix) of size 1024× 1024 before the
ResNet18 architecture. This dense layer can in theory represent a permutation, but cannot benefit from
the additional techniques described above.

5. Baseline CNN (unpermuted): We use the standard ResNet18 architecture applied to the unpermuted
CIFAR-10 dataset.

All models are trained for 200 total epochs, with the Adam optimizer. We use the standard learning rate
schedule and weight decay from Mostafa & Wang (2019). We use Hyperband (Li et al., 2017) to tune other
hyperparameters such as the initial learning rate and annealing temperature.

20

B.4 Speeding up DynamicConv’s inference
B.4.1 Model architecture

We start with the DynamicConv Transformer architecture (Wu et al., 2019), which is a variant of the
Transformer architecture (Vaswani et al., 2017) where the self-attention in each layer is replaced with a
light-weight DynamicConv module. We use the implementation from the Fairseq library(Ott et al., 2019),9
with PyTorch version 1.2.

The architecture of each layer of the decoder is: Linear → DynamicConv → Linear → LayerNorm →
Encoder-decoder attention → LayerNorm → Linear → ReLU → Linear → ReLU → LayerNorm. In every
layer of the decoder, we replace the dense weight matrix in each of the four Linear layers with a K-matrix
from the B class (i.e. a butterfly matrix).

B.4.2 Training and evaluation

The models are trained from scratch using the training script from the Fairseq repository, with the same
hyperparameters (optimizer, learning rate, number of updates, etc.) used in the DynamicConv paper (Wu
et al., 2019). We note that the DynamicConv model with K-matrices in the decoder trains slightly faster than
the default DynamicConv model (both models are trained for 50,000 updates, which requires approximately
7% less time for the K-matrix model than for the default model).

To evaluate inference speed, we run the decoding script on the IWSLT-14 De-En test set in single-threaded
mode on a server Intel Xeon CPU E5-2690 v4 at 2.60GHz, and measure wall-clock time. The test set contains
6750 sentences, with 149241 tokens. Following Wu et al. (2019), we set the batch size to 1 and beam size to 1
for this evaluation.

B.4.3 Additional comparison with other structured matrices

We additionally compare the speed-quality tradeoff of K-matrices with other classes of structured matrices,
when used to replace the fully-connected layers of DynamicConv’s decoder. We consider the following additional
classes of structured matrices: low-rank, circulant, Toeplitz-like (Sindhwani et al., 2015), ACDC (Moczulski
et al., 2016), Fastfood (Le et al., 2013), and sparse. For classes with a variable number of parameters (e.g.
low-rank, sparse), we set the number of parameters to match that of K-matrices. For sparse matrices, besides
the result for an ensemble of 10 models (the default setting in the Fairseq repository), we also report the
result for a single model, as that could have faster inference time (since ensembling/averaging sparse matrices
produces a less sparse matrix).

In Figure 5, we plot the tradeoff between translation quality (measured by BLEU score) and inference
speed (sentences per second). Most classes of structured matrices produce similar translation quality (between
34.1 and 34.4 BLEU score). K-matrices have the second fastest inference time, only 7% slower than low-rank
matrices. We note that low-rank matrices benefit from very well-tuned BLAS routines (matrix-matrix
multiplication). Even though our implementation of K-matrix multiplication is not yet highly optimized, it is
already quite close to the speed of low-rank matrix multiplication at an equivalent parameter count.

C Speed benchmark and implementation details
Each K-matrix (for fixed width and expansion), has an O(n log n) matrix-vector multiplication algorithm:
sequentially multiply the input vector with each of the sparse factors. Our implementation of this simple
algorithm is surprisingly competitive with optimized subroutines, both on GPU (e.g. for training) and on
CPU (e.g. for inference). In Figure 6, we compare the speed of multiplying by a K-matrix in class B (i.e. a
butterfly matrix) against a specialized implementation of the FFT. We normalize the speed by the speed of
dense matrix-matrix multiply (on GPU) or dense matrix-vector multiply (on CPU). On GPU, with input
sizes n = 1024 and batch size 2048, the training time (forward and backward) of K-matrices matrix is about
3x faster than dense matrix multiply (GEMM from cuBLAS). For inference on CPU, the kaleidoscope fast
multiplication can be one or two orders of magnitude faster than GEMV. Over a range of matrix sizes, our

9This library can be found at https://github.com/pytorch/fairseq

21

https://github.com/pytorch/fairseq

33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2
BLEU

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Se
nt

en
ce

s/
s

Transformer

DynamicConv

Kaleidoscope

Low-rank

Circulant

Toeplitz-like

ACDC

Fastfood
Sparse

Sparse (ensemble)

Figure 5: Tradeoff between translation quality (measured by BLEU score) and inference speed (sentences per
second). K-matrices have the second fastest inference speed, only 7% slower than low-rank matrices.

implementation is within a factor of 2-4x of specialized implementations of the FFT, a highly optimized
kernel.

Our implementation is also memory-efficient. In the forward pass through the O(log n) sparse factors, we
do not store the intermediate results, but recompute them during the backward pass. Therefore the activation
memory required is O(bn) for an input batch size of b.

D Synthetic matrix recovery
We directly validate Theorem 1 on well-known types of structured matrices used in machine learning. Given
a structured matrix M, we attempt to represent M as closely as possible using K-matrices as well as the
standard classes of structured matrices: sparse and low-rank. In Table 7, we quantify the expressivity of
each of these three methods, as measured by their ability to approximate a range of different structures.
Results for “global minimum” of kaleidoscope matrices are obtained from the theoretical expressiveness
results in Section I and Section J. Low-rank and sparse approximation have closed form solutions: truncating
the SVD and keeping the largest-magnitude entries, respectively. We also report the results using SGD
for kaleidoscope matrices to validate that good approximation with K-matrices can be obtained even from
standard first-order optimization algorithms. Even with imperfect optimization, kaleidoscope matrices can
still capture out-of-class target matrices better than low-rank and sparse matrices.

The target matrices are kaleidoscope, low-rank, sparse, convolution (i.e. circulant matrices), Fastfood (Le
et al., 2013), and entrywise random IID Gaussian matrix (to show the typical magnitude of the error). All
target matrices M were randomly initialized such that E[MTM] = I.

To find a kaleidoscope approximation with SGD, we used Hyperband to tune its learning rate (between
0.001 and 0.5).

22

(a) Training (GPU) (b) Inference (CPU)

Figure 6: Speedup of FFT and Kaleidoscope against dense matrix-matrix multiply (GEMM) for training,
and against dense matrix-vector multiply (GEMV) for inference.

E Properties of the BB∗ Hierarchy
Here, we justify why the definitions in Section 2.2 give rise to a hierarchy. We first make some basic
observations about the parameterization.

Observation E.1. An n× n matrix M ∈ BB∗ has 4n log n parameters.

Proof. M can be expressed as a product of 2 log n butterfly factor matrices of size n×n. Each of these factor
matrices has 2 parameters per row, for a total of 2n parameters each. Hence, the total number of parameters
is 4n log n.

Observation E.2. Let M be an n× n matrix in (BB∗)we . Then, given an arbitrary vector v of length n, we
can compute Mv with O(wne log(ne)) field operations.

Proof. Since M ∈ (BB∗)we , we can decompose it as SE1E2 . . .EwST , where S is as given in Definition 2.4,
and each Ei is an en × en matrix in BB∗. Therefore, to compute Mv, we can use associativity of matrix
multiplication to multiply the vector by one of these matrices at a time.

Since all of these factors are sparse, we use the naïve sparse matrix-vector multiplication algorithm (begin
with a 0-vector and perform the corresponding multiplication and addition for each nonzero matrix entry). S
(and thus ST) have n NNZ. Therefore, matrix-vector multiplication by S or ST requires O(n) operations,
which is dominated by the butterfly matrix-vector multiplication. Each Ei can be further decomposed
into 2 log(ne) matrices with at most 2ne non-zero entries each (by Observation E.1). Therefore, matrix
vector multiplication by each Ei requires O(ne log(ne)). Since there are w such Ei, we require a total of
O(wne log(ne)) operations.

Now, we are ready to show that our definition of classes (BB∗)we forms a natural hierarchy.
First, we must argue that all matrices are contained within the hierarchy.

Lemma E.3. Let M be an arbitrary n× n matrix. Then M ∈ (BB∗)(2n−2).

Proof. Corollary E.3 in Appendix K shows that any n×nmatrix can be written in the form M1M
′
1
∗
. . .Mn−1M

′
n−1
∗
MMnM′

n
∗
. . .M2n−2M

′
n−2
∗,

where Mi,M
′
i are orthogonal butterfly matrices and M is a diagonal matrix. We can combine D with Mn to

form another (possibly not orthogonal) butterfly matrix. This yields a decomposition of M as products of
(possibly not orthogonal) butterfly matrices and their (conjugate) transposes, completing the proof.

23

Table 7: Expressiveness of different classes of structured matrices: Frobenius error of representing
common structured matrices (columns) of dimension 256 using three structured representations of matrices
with adjustable numbers of parameters. (Left group: Target matrices in the same class as the methods.
Middle group: Target matrices with fixed number of parameters. Right: Random matrix to show typical scale
of error.) Each method is allotted the same number of parameters, equal to a log n factor more than that of
the target matrix. Low-rank and sparse matrices are unable to capture any structure outside their own class,
while the minima for kaleidoscope matrices found via optimization better capture the actual structure for
out-of-class targets better than the baselines.

Method Target Kaleidoscope Low-rank Sparse Convolution Fastfood Random

Kaleidoscope 0.0 0.0 0.0 0.0 0.0
Global Min. Low-rank 14.9 0.0 10.8 14.6 11.6 15.5

Sparse 11.7 12.2 0.0 13.1 7.1 14.1

With SGD Kaleidoscope 0.0 0.01 8.0 0.0 5.1 14.5

Next, we argue that, up to a certain point, this hierarchy is strict.

Lemma E.4. For every fixed c ≥ 1, there is an n × n matrix Mn (with n sufficiently large) such that
Mn ∈ (BB∗)c+1 but Mn 6∈ (BB∗)c.

Proof. Given c, fix n to be a power of 2 such that c < n
4 log2 n

. For sake of contradiction, assume that
every n× n matrix in (BB∗)c+1 is also in (BB∗)c. Let A be an arbitrary n× n matrix. From Lemma E.3,
A ∈ (BB∗)(2n−2). From our assumption, we can replace the first c+ 1 BB∗ factors of A with c (potentially
different) BB∗ factors and still recover A. We can repeat this process until we are left with c BB∗ factors,
implying that A ∈ (BB∗)c. From Observation E.1, we require 4cn log n < n2 (by our choice of n) parameters
to completely describe A. This is a contradiction since A is an arbitrary n× n matrix, and therefore has n2
arbitrary parameters. Hence, there must be some n× n matrix in (BB∗)c+1 that is not in (BB∗)c.

F Arithmetic Circuits in BB∗ Hierarchy
In this appendix, we prove our main theoretical result, namely, our ability to capture general transformations,
expressed as low-depth linear arithmetic circuits, in the BB∗ hierarchy. This result is recorded in Theorem 1.

Theorem 1. Let M be an n×n matrix such that matrix-vector multiplication of M times an arbitrary vector
v can be represented as a be a linear arithmetic circuit C comprised of s gates (including inputs) and having
depth d. Then, M ∈ (BB∗)O(d)

O(s
n).

To prove Theorem 1, we make use of the following two theorems.

Theorem 2. Let P be an n× n permutation matrix (with n a power of 2). Then P ∈ BB∗.

Theorem 3. Let S be an n× n matrix of s NNZ. Then S ∈ (BB∗)4d
s
ne

4 .

Theorem 2 is proven in Appendix G, and Theorem 3 is proven in Appendix I.

Proof of Theorem 1. We will represent C as a product of d matrices, each of size s′ × s′, where s′ is the
smallest power of 2 that is greater than or equal to s.

To introduce some notation, define w1, . . . wd such that wk represents the number of gates in the k’th
layer of C (note that s = n+

∑d
k=1 wk). Also, define z1, . . . zd such that z1 = n and zk = wk−1 + zk−1 (zk is

the number of gates that have already been used by the time we get to layer k).
Let gi denote the i’th gate (and its output) of C (0 ≤ i < s), defined such that:

gi =

{
vi 0 ≤ i < n

αjgi1 + βigi2 n ≤ i < s

24

where i1, i2 are indices of gates in earlier layers.
For the k’th layer of C, we define the s′ × s′ matrix Mk such that it performs the computations of the

gates in that layer. Define the i’th row of Mk to be:

Mk[i :] =

eTi 0 ≤ i < zk

αie
T
i1

+ βie
T
i2

zk ≤ i < zk + wk

0 i ≥ zk + wk

For any 0 ≤ k ≤ d, let vk be vector

vk = Mk . . .M2M1

[
v
0

]
.

We’d like to argue that vd contains the outputs of all gates in C (i.e, the n values that make up Mv). To do
this we argue, by induction on k, that vk is the vector whose first zk+1 entries are g0, g1, . . . , g(zk−1), and
whose remaining entries are 0. The base case, k = 0 is trivial. Assuming this holds for the case k − 1, and
consider multiplying vk−1 by Mk. The first zk rows of Mk duplicate the first zk entries of vk−1 The next wk
rows perform the computation of gates gzk , . . . , g(zk+1−1). Finally, the remaining rows pad the output vector
with zeros. Therefore, vk is exactly as desired.

The final matrix product will contain all n elements of the output. By left multiplying by some permutation
matrix P, we can reorder this vector such that the first n entries are exactly Mv. Hence, we are left to argue
the position of PMd . . .M2M1 within the BB∗ hierarchy. Each Mk is a matrix with total 2wk + zk < 2s′

NNZ. From Theorem 3, we can, therefore, represent Mk as a product of O(1) matrices (of size 2s′) in BB∗.
From Theorem 2, P ∈ BB∗. Note that s ≤ s′ < 2s, so s′ = Θ(s).

Our final decomposition will have O(d) BB∗ factors, and requires an expansion from size n to size 2s′, or
an expansion factor of O(sn). Therefore, M ∈ (BB∗)O(d)

O(s
n), as desired.

Remark F.1. By applying Observation E.2, we see that Theorem 1 gives an O(sd log s) matrix vector
multiplication algorithm for M.

G Permutations in BB∗

In this appendix, we prove Theorem 2. In addition, we will also show that permutations are in B∗B, where
the set B∗B is defined analogously to BB∗ (i.e. matrices of the form M = M∗

1M2 for some M1,M2 ∈ B).
To prove Theorem 2, we decompose permutation matrix P into P = LR, with L ∈ B and R ∈ B∗.

Throughout the proof, we make use of the following definition.

Definition G.1. Let L be an n × n permutation matrix (n a power of 2). We say that L meets the 2j

balance condition if L can be divided into chunks of 2j (with each chunk having all columns i such that
⌊
i
2j

⌋
has the same value) such that for every 0 ≤ m < 2j, each chunk has exactly one L[:, k] = eπk

with πk ≡ m
(mod 2j). We say that L is modular-balanced if it meets the 2j balance condition for each 2 ≤ 2j ≤ n.

25

0
1
2
3
4
5
6
7

(0)
(1)
(2)
(3)
(0)
(1)
(2)
(3)

L

=

Bn L′

Figure 7: First step of decomposition of modular-balanced matrix L. Here, the red entries must be permuted
into the main diagonal blocks.

Lemma G.1. Let L be an n× n modular-balanced matrix. Then L ∈ B.

Proof. We proceed by induction on n. The base case n = 2 is trivial. As our inductive hypothesis, we assume
that all modular-balanced matrices of size n

2 ×
n
2 are butterfly matrices of size n

2 . From Definition 2.3, it is
sufficient to show that L can be decomposed as:

L = Bn

[
L1 0
0 L2

]
︸ ︷︷ ︸

L′

,

where Bn is a butterfly factor of size n and each Lj is an n
2 ×

n
2 modular-balanced matrix.

Define L1 and L2 such that:

L1[i, j] = L[i, j] + L
[
i+

n

2
, j
]

L2[i, j] = L
[
i, j +

n

2

]
+ L

[
i+

n

2
, j +

n

2

]
.

Note that since L is a permutation matrix (and thus has exactly one non-zero entry per column), at most
one term of each of these sums can be non-zero.

For sake of contradiction, assume L1 is not modular-balanced. Then, for some 2j ≤ n
2 , there are two

columns c1, c2 such that
⌊
c1
2j

⌋
=
⌊
c2
2j

⌋
and such that indices of the non-zero entries of L1 in columns c1 and c2

are the same modulo 2j . However, from the definition of L1, this implies that the indices of the non-zero
entries of L in columns c1 and c2 are also the same modulo 2j , contradicting L being modular-balanced.
Hence, L1 is modular-balanced. An analogous argument (that instead considers columns c1 + n

2 , c2 + n
2 of L)

shows that L2 is also modular-balanced.
To complete the proof, we must argue that Bn is a butterfly factor of size n. Since each Li is modular-

balanced, it is a permutation matrix. Therefore, L′ has exactly 1 non-zero entry in each of the first n
2 rows

and columns from L1 and exactly 1 non-zero entry in each of the second n
2 rows and columns from L2. Hence,

L′ is a permutation matrix. Since both L and L′ are permutation matrices, B = L (L′)
−1 must also be a

permutation matrix. Therefore, we can view B as performing a permutation of the rows of L′ to get L.
Consider the i’th row of L′, with 0 ≤ i < n

2 . There are two possible cases.
Case 1: L′[i, :] = L[i, :]
In this case, the column of L with a non-zero entry in row i is in the left n

2 columns. The column of L
with a non-zero entry in row i+ n

2 must, therefore, be in the right n
2 columns, otherwise L would not satisfy

the n
2 balance condition. Therefore, L′

[
i+ n

2 , :
]

= L
[
i+ n

2 , :
]
, so we set B[i, i] = B

[
i+ n

2 , i+ n
2

]
= 1.

Case 2: L′[i, :] 6= L[i, :]
By the definition of L′, L′[i, :] = L

[
i+ n

2 , :
]
. In this case, the column of L with a non-zero entry in row i+ n

2
must be in the left n

2 columns. By the n
2 balance condition of L, the column of L with a non-zero entry in row

i must be in the right n
2 columns. Therefore, L′

[
i+ n

2 , :
]

= L [i, :], so we set B
[
i, i+ n

2

]
= B

[
i+ n

2 , i
]

= 1.
In both cases, the non-zero entries of B fall into the correct diagonal bands (the main diagonal, and the

bands n
2 away). Hence, B is a butterfly factor of size n.

26

Now, we consider the process of transforming P into a modular-balanced matrix. We make use of the
following lemma.

0
1
2
3
4
5
6
7

(0)
(1)
(2)
(3)
(0)
(1)
(2)
(3)

P

G

0 1

2 3

Bn

Figure 8: First step of balancing 8× 8 bit reversal permutation (a component of the 8× 8 DFT). Red signifies
edges that must be flipped.

Lemma G.2. Let M be a k × k matrix with 1 non-zero entry per column, such that for each 0 ≤ m < k
2 ,

there are exactly 2 columns with non-zero entry in a row with index ≡ m
(
mod k

2

)
. Then, there is a butterfly

factor Bk such that MBk = M′, where M′ meets the k and k
2 balance conditions.

Proof. We construct a directed graph G with nodes in
[
k
2

]
. For each 0 ≤ i < k

2 we add a directed edge
from node

(
s mod k

2

)
to node

(
t mod k

2

)
if M[:, i] = es and M

[
:, i+ k

2

]
= et. Each node has (undirected)

degree exactly 2 by the structure of M. Hence, G is a union of disjoint (undirected) cycles.
If M met the k

2 balance condition, then each node would additionally have in-degree exactly 1 and
out-degree exactly 1. By reversing edges of G such that each (undirected) cycle becomes a directed cycle, we
can achieve this. However, reversing edges corresponds to swapping columns of M that are k

2 apart. Let
Bk be the permutation matrix that performs all such swaps. Bk has non-zero entries only along the main
diagonal and the diagonal bands k

2 away, and thus is a butterfly factor of size k.

We are ready to present the decomposition of P.

Lemma G.3. Let P be an n× n permutation matrix. Then we can decompose P into P = LR, where L is
modular-balanced and R ∈ B∗.

Proof. We repeatedly apply Lemma G.2. First, we conclude that there is a butterfly factor Bn such that

PBn = P′,

where P′ meets the n
2 balance condition. Now, we consider the first and last n

2 columns of P′ independently.
We can again apply Lemma G.2 (twice) to conclude that there are butterfly factors

[
Bn

2

]
1
,
[
Bn

2

]
2
such that

PBn

[[
Bn

2

]
1

0

0
[
Bn

2

]
2

]
= PB(n)

n B
(n)
n
2

= P′′,

where P′′ meets the n
2 and n

4 balance conditions.
We continue this process until we obtain a matrix that meets all of the balance conditions. Our final

equation is of the form:
P ·B(n)

n B
(n)
n
2
. . .B

(n)
2 = PB = L,

where B is a butterfly matrix and L is a modular-balanced matrix. Let R = B−1 = B∗ (since B is a
permutation matrix, and thus is orthogonal) and hence R ∈ B∗. Then P = LR, as desired.

Theorem 2 follows immediately from Lemmas G.3 and G.1.

27

Remark G.4. The result that BB∗ can represent a permutation has been known in the literature on switching
networks (Dally & Towles, 2004). The matrix class BB∗ is called the Benes network, and the ability to
represent any permutation is called rearrangeability (Benes, 1964, 1965).

We now show that permutations are also in B∗B. We start with the relationship between butterfly matrices
and the bit-reversal permutation.

Lemma G.5. Let Pbr be the n × n bit-reversal permutation matrix where n is some power of 2, and let
M1 ∈ B be an n× n butterfly matrix. Then there is some butterfly matrix M2 ∈ B such that

M∗
1 = PbrM2Pbr.

Proof sketch. For any input vector x of length n, to perform M∗
1x, we trace through log2 n steps of the

multiplication algorithm. At each step, we perform 2× 2 matrix multiplication on elements of x whose indices
are n/2 apart (e.g. indices 0 and n/2, 1 and n/2 + 1, etc.), then n/4 apart, and so on, till indices are that 1
apart. If we apply the bit-reversal permutation on x, then indices that are n/2 apart will become 1 apart,
indices that are n/4 apart will become 2 apart, and so on. So the multiplication algorithm M∗

1x is equivalent
to applying bit-reversal, then multiplying the permuted vector with another butterfly matrix (i.e. 2× 2 matrix
multiplication on indices that are 1 apart, then 2 apart, and so on, till indices that are n/2 apart). Finally
we need to do another bit-reversal permutation to put all the indices back to the original order. If we call
this other butterfly matrix M2, then we have shown that M∗

1x = PbrM2Pbrx. This holds for all x (for the
same matrix M2), so we have M∗

1 = PbrM2Pbr.

Remark G.6. Lemma G.5 explains the connection between the two most common fast Fourier transform
algorithm, decimation in time and decimation in frequency. Using the decimation-in-time FFT, we can write
the DFT matrix F as product of a butterfly matrix M1 and the bit-reversal permutation (see Section J):

F = M1Pbr.

Taking conjugate transpose, we obtain F∗ = PbrM
∗
1 (recall that Pbr is its own transpose/inverse). On the

other hand, F∗ is just a scaled version of the inverse DFT matrix, so apply decimation-in-time FFT to the
inverse DFT, we can write F∗ = M2Pbr for some other butterfly matrix M2. Hence PbrM

∗
1 = M2Pbr, and

thus PbrM
∗
1Pbr = M2 (for these particular butterfly matrices M1 and M2). Note that this yields another

decomposition of the DFT matrix, F = PbrM
∗
2, which is exactly the decimation-in-frequency FFT algorithm.

We are ready to show that permutations are in B∗B.

Lemma G.7. Let P be an n×n permutation matrix (with n a power of 2). Then there are butterfly matrices
M1,M2 ∈ B such that P = M∗

1M2.

Proof. Consider the permutation P̃ = PbrPPbr. By Theorem 2, there are some butterfly matrices M̃1, M̃2 ∈ B
such that P̃ = M̃1M̃2

∗
. Applying Lemma G.5, we can replace M̃2

∗
with PbrM2Pbr for some butterfly

matrix M2 ∈ B. We thus have:
PbrPPbr = M̃1PbrM2Pbr.

Pre- and post-multiply both sides by Pbr (which is its own inverse):

P = PbrM̃1PbrM2.

Applying Lemma G.5 again, we can replace PbrM̃1Pbr with M∗
1 for some butterfly matrix M1 ∈ B. Thus:

P = M∗
1M2.

28

H BB∗ Closure Lemmas
Here, we present some basic facts of the BB∗ hierarchy that will be useful for later constructions. For
simplicity, we assume (WLOG via 0-padding) that all matrices are square matrices with size that is a power
of 2.

Lemma H.1. If M ∈ B (or M ∈ B∗), then DM,MD ∈ B (B∗ resp.) for any diagonal matrix D.

Proof. Left multiplication by a diagonal matrix scales the rows of M by the corresponding diagonal entries.
The same can be achieved by scaling all entries the leftmost butterfly factor matrix. Similarly, right
multiplication by a diagonal matrix scales the columns of M, which can be achieved by scaling all entries in
the columns of the rightmost butterfly factor matrix.

Lemma H.2. Let A,B ∈ Fn×n. If A ∈ (BB∗)w1
e and B ∈ (BB∗)w2

e then AB ∈ (BB∗)w1+w2
e .

Proof. Let EA,EB ∈ Fen×en be defined such that A = SEAST , B = SEBST (with S as in Definition 2.4).
Then

AB = S

[
In 0
0 0

]
︸ ︷︷ ︸
en× en

EA

[
In 0
0 0

]
︸ ︷︷ ︸
en× en

EB ST

[
In 0
0 0

]
EA ∈ (BB∗)w1 ,

[
In 0
0 0

]
EB ∈ (BB∗)w2 by Lemma H.1. Hence, AB ∈ (BB∗)w1+w2

e by Definition 2.4.

Lemma H.3. Let A1, . . . ,Am ∈ Fk×k. If A1, . . . ,Am ∈ (BB∗)we then Diag(A1, . . . ,Am) ∈ (BB∗)w+2
e .

Proof. For each 1 ≤ i ≤ m, let EAi ∈ Fek×ek be defined such that Ai = SEAiS
T (with S as in Definition 2.4).

Then
A1 0 . . . 0
0 A2 . . . 0
...

...
. . . 0

0 0 . . . Am

 = SP

EA1

0 . . . 0
0 EA2

. . . 0
...

...
. . . 0

0 0 . . . EAm

PTST

where P is a permutation that that moves the first k rows of each EAi
(in order) into the top mk rows. From

Theorem 2, P ∈ BB∗, (and so is PT , also a permutation). Within the RHS block matrix, the decompositions
of each EAi can be done in parallel, requiring total width w. Hence, Diag(A1, . . . ,Am) ∈ (BB∗)w+2

e , as
desired.

Remark H.4. If e = 1 in Lemma H.3, then P is unnecessary. Hence, Diag(A1, . . . ,Am) ∈ (BB∗)w.

Lemma H.5. Let A1, . . . ,Am be k × k matrices in (BB∗)we then
∑m
i=1 Ai ∈ (BB∗)mw4e .

Proof. For each 1 ≤ i ≤ m, let EAi ∈ Fek×ek be defined such that Ai = SEAiS
T (with S as in Definition 2.4).

Note that EAi
∈ (BB∗)w. Consider matrices of the form:

Iek EAi 0 0
0 Iek 0 0
0 0 0 0
0 0 0 0

︸ ︷︷ ︸

Mi ∈ F4ek×4ek

=

[
I2ek I2ek

0 0

]
︸ ︷︷ ︸

L

Iek 0 0 0
0 Iek 0 0
0 0 EAi

0
0 0 0 0

︸ ︷︷ ︸

S

Iek 0
0 Iek

0 0
0 0

0 0
0 0

0 Iek
Iek 0

︸ ︷︷ ︸

P1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

.

Here, L and R compute the sum of the 2ek × 2ek matrices on the diagonal of SP1, where P1 is a
permutation swapping EAi

to the 4th ek-block column. Note that S is the diagonalization of four matrices
in (BB∗)w, so S ∈ (BB∗)w by Remark H.4. In addition, since each block in S is a butterfly matrix of size
ek, S only uses butterfly factors up to size ek, so the outer factor matrices of sizes 4ek and 2ek in S are
unused. Also note that L and R are butterfly factor matrices of size 4ek (or B

(4ek)
4ek), and P1 is a butterfly

29

factor matrix of size 2ek (or B
(4ek)
2ek). This allows us to fold the surrounding matrices L,P1,R into S, so

Mi ∈ (BB∗)w.
Through repeated application (m times) of the identity[

I A
0 I

] [
I B
0 I

]
=

[
I A + B
0 I

]
,

we see that
Iek

∑m
i=1 EAi

0 0
0 Iek 0 0
0 0 0 0
0 0 0 0

︸ ︷︷ ︸

M ∈ F4en×4en

=

m∏
i=1

Mi. (2)

From Lemma H.2, M ∈ (BB∗)mw. Finally, note that
∑m
i=1 Ai = SMP2S

T , where P2 is a permutation that
moves the first k columns of the second block-column of M to the left. P2 can be folded into the final
summation factor Mm as follows:

Iek 0
0 Iek

0 0
0 0

0 0
0 0

0 Iek
Iek 0

︸ ︷︷ ︸

P1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

0 Iek 0 0

Iek 0 0 0
0 0 Iek 0
0 0 0 Iek

︸ ︷︷ ︸

P2

=

0 Iek

Iek 0
0 0
0 0

0 0
0 0

Iek 0
0 Iek

︸ ︷︷ ︸

P′1

[
I2ek 0
I2ek 0

]
︸ ︷︷ ︸

R

(3)

Hence,
∑m
i=1 Ai ∈ (BB∗)mw4e , as desired.

Lemma H.6. Let M be an invertible n× n matrix such that M ∈ B. Then M−1 ∈ B∗.

Proof. We prove this in a series of steps.
First, let Bk be an invertible butterfly factor of size k. Consider the method of computing B−1k by

performing Gaussian elimination on the matrix
[
Bk|Ik

]
to obtain the matrix

[
Ik|B−1k

]
. By the form of

B, non-zero entries within a row or column are always exactly k
2 positions apart. Therefore, the only row

operations needed for this Gaussian elimination are:

• Scaling a row by a constant factor c 6= 0

• Addition of a row to another row exactly k
2 rows apart

Performing these operations on Ik will only allow non-zeros on the main diagonal and k
2 diagonals away from

the main diagonal. Hence, B−1k is also a butterfly factor of size k.
Next, let B

(n)
k be an invertible butterfly factor matrix of size n and block size k. Its inverse is the block

diagonal matrix formed by the inverses of each of its constituent butterfly factors. From above,
(
B

(n)
k

)−1
is

also a butterfly factor matrix of size n and block size k.
Finally, consider M ∈ B.

M−1 =
(
B(n)
n B

(n)
n
2
. . .B

(n)
2

)−1
=
(
B

(n)
2

)−1(
B

(n)
4

)−1
. . .
(
B(n)
n

)−1
= B′2

(n)
B′4

(n)
. . .B′n

(n) ∈ B∗

Finally, we include a closure result for the Kronecker product, another common matrix composition
operation. Although Lemma H.7 is not directly used in the subsequent proofs, it allows for examples the
results for the DFT to be lifted to higher-dimensional Fourier transforms. We also note that the closure
bound in Lemma H.7 can be tightened in such cases (cfṘemark H.4).

Lemma H.7. Let A,B ∈ Fn×n. If A ∈ (BB∗)w1
e and B ∈ (BB∗)w2

e then A⊗B ∈ (BB∗)w1+w2+6
e .

30

Proof. Note that
A⊗B = (A⊗ I)(I⊗B) = P−1(I⊗A)P(I⊗B),

for some permutation P. By Lemma H.3, I⊗A and I⊗B are in (BB∗)w1+2
e , (BB∗)w2+2

e respectively. The
result follows from combining with P ∈ BB∗ and Lemma H.2.

I Sparse Matrices in BB∗ Hierarchy
In this appendix, we prove Theorem 3. First, we consider matrices with at most n NNZ.

Lemma I.1. let S be an n× n matrix with at most n NNZ. Then, S ∈ (BB∗)4.

We use this lemma and the addition closure lemma to prove Theorem 3.

Proof of Theorem 3. We note that any s sparse matrix is the sum of
⌈
s
n

⌉
matrices of at most n NNZ, and

we appeal to Lemma H.5.

In the rest of the section we will prove Lemma I.1. We begin by defining two classes of matrices that will
be used in our decomposition.

Definition I.1. An n×n matrix H is a horizontal step matrix if for every 0 ≤ i, i′ < n and 0 ≤ j ≤ j′ < n,
if H[i, j] 6= 0 and H[i′, j′] 6= 0, then j′ − j ≥ (i′ − i) mod n.

An n× n matrix V is a vertical step matrix if V∗ is a horizontal step matrix.

With this definition, the horizontal step matrix obeys a “Lipschitz-like" condition. Each column of a
horizontal step matrix can have at most one non-zero entry, and given two non-zero columns k apart, the
non-zero entry in the right column must be between 0 and k rows below the non-zero entry in the left column.
Note that to show that a matrix is a horizontal step matrix, it is sufficient to argue that this condition holds
for each pair of neighboring non-zero columns.

Similarly, each row of a vertical step matrix can have at most one non-zero entry, and given two non-zero
rows k apart, the non-zero entry in the lower row must be between 0 and k columns to the right of the
non-zero entry in the upper row.

Lemma I.2. Let H be an n× n horizontal step matrix. Then H ∈ B.

Proof. We proceed by induction on n. The base case n = 2 is trivial. As our inductive hypothesis, we assume
that all horizontal step matrices of size n

2 ×
n
2 are butterfly matrices of size n

2 . From Definition 2.3, it is
sufficient to show that H can be decomposed as:

H =

[
D1 D2

D3 D4

] [
H1 0
0 H2

]
=

[
D1H1 D2H2

D3H1 D4H2

]
, (4)

where H1,H2 are n
2 ×

n
2 horizontal step matrices and each Dk is a n

2 ×
n
2 diagonal matrix. Denote the four,

n
2 ×

n
2 corner submatrices of H by:

H =

[
H11 H12

H21 H22

]
.

Then, define H1 and H2 by:
H1 = H11 + H21 H2 = H12 + H22

For sake of contradiction, assume that H1 is not a horizontal step matrix. Then, there are 0 ≤ i, i′ < n
2 ,

0 ≤ j ≤ j′ < n
2 such that H1[i, j] 6= 0, H1[i′, j′] 6= 0, and j′ − j < (i′ − i) mod n

2 . From our definition of H1,
the non-zero entries in columns j and j′ of H are either

(
(i′ − i) mod n

2

)
or
(
n
2 + (i′ − i) mod n

2

)
, both of

which are greater than j′ − j, rows apart. This contradicts H being a horizontal step matrix. Hence, H1

must be a horizontal step matrix, as must H2 from an analogous argument.
Next, we define D1,D2,D3,D4 by:

D1[k, k] =

{
1 H21[k, :] = 0

0 otherwise
D2[k, k] =

{
1 H22[k, :] = 0

0 otherwise

31

D3[k, k] =

{
1 H11[k, :] = 0

0 otherwise.
D4[k, k] =

{
1 H12[k, :] = 0

0 otherwise.

To finish the proof, we argue the correctness of the decomposition by equating arbitrary entries of each of
the 4 corner submatrices. We begin with the upper left submatrix.

D1H1[i, j] =

n
2∑

k=0

D1[i, k] ·H1[k, j] by definition of matrix multiplication

= D1[i, i] ·H1[i, j] D1 is a diagonal matrix
= 1(H21[i,:]=0) · (H11[i, j] + H21[i, j]) by definition of D1 and H1

Here, we consider two cases:
Case 1: H21[i, j] 6= 0
Since H is a horizontal step matrix (and hence may have at most one non-zero entry per column), it

follows that H11[i, j] = 0. In this case, the indicator function evaluates to 0, so D1H1[i, j] = 0 = H11[i, j], as
desired.

Case 2: H21[i, j] = 0
If H11[i, j] = 0, then D1H1[i, j] = 0 = H11[i, j]. Otherwise, for sake of contradiction, suppose that

H21[i, :] 6= 0. Then, two of the first n
2 columns of H would have non-zero entries n

2 rows apart, contradicting
H being a horizontal step matrix. Hence, H21[i, :] = 0, so D1H1[i, j] = H11[i, j], as desired.

In all cases, D1H1[i, j] = H11[i, j], so our decomposition correctly recovers the upper left corner of H.
Analogous arguments show that the other three corners are also correctly recovered. Hence, our decomposition
is correct, and by induction, H ∈ B.

Corollary I.3. Let V be a vertical step matrix. Then V ∈ B∗.

1

2

3 4

S

=

1

1

1

1

P1

1

2

3 4

S′

1

1

1

1

P3
||

1

2

3 4

H

1

1

1

1

V′
||

1

1

1

1

P2

1

1

1

1

V

Figure 9: Decomposition of 4× 4 sparse matrix S into P1HP2VP3

32

Now, we use step matrices to prove Lemma I.1.

Proof of Lemma I.1. Given S, we decompose it as S = P1HP2VP3, where each P` is a permutation matrix,
H is a horizontal step matrix, and V is a vertical step matrix. For an example of this, see Figure 9.

We first decompose S as S = P1S
′P3, where P1 is the permutation that moves all 0 rows of S to the

bottom and P3 is the permutation that moves all 0 columns of S to the right.
Next, we further decompose S′ into S′ = HV′ as follows. Since S′ has s ≤ n NNZ, we can parameterize

S′ by θ = {(ck, ik, jk) : 0 ≤ k < s} such that S′[ik, jk] = ck, with the non-zero entries indexed in row-major
order. Define matrix H by:

H[:, k] =

{
ck · eik 0 ≤ k < s

0 otherwise.

Define matrix V′ by:

V′[k, :] =

{
eTjk 0 ≤ k < s

0 otherwise.

To show that S′ = HV′, we consider an arbitrary entry:

HV′[i, j] =

n∑
k=0

H[i, k] ·V′[k, j] by definition of matrix multiplication

=

s∑
k=0

H[i, k] ·V′[k, j] H is 0 in all but first s columns

=

s∑
k=0

ck · 1i=ik · 1j=jk by definition of H and V′

Here, we note that (i, j) can equal (ik, jk) for at most one value of k since the locations in θ are unique. Hence,
HV′[i, j] = ck only if (i, j) = (ik, jk) for some k, which is exactly the definition of S′. Hence, S′ = HV′.

We argue that H is a horizontal step matrix through a series of assertions. First, note that H has exactly
one non-zero entry in each of its first s columns. Also, note that since θ is in row-major order, these non-zero
entries are sorted (any column to the right cannot have a non-zero entry in a higher row). Hence, to show
that H is a horizontal step matrix, it is sufficient to argue that adjacent columns of H have non-zero entries
at most one row apart. This is equivalent to S′ having no zero rows between two non-zero rows, which is
guaranteed by P1. Hence, H is a horizontal step matrix.

Since V′ has at most one non-zero entry per row, we may permute the rows of V′ to obtain a matrix V,
where the non-zero entries of V are sorted (any lower row below cannot have a non-zero entry in an earlier
column). Hence, for some permutation matrix (P2)

−1, V = (P2)
−1

V′, which implies that V′ = P2V. It
has exactly one non-zero entry in each of its first s columns. From the action of P2, these non-zero entries
are sorted. Therefore, by the same argument as for H above, VT is a horizontal step matrix. Hence, V is a
vertical step matrix.

In all, we have found a decomposition S = P1HP2VP3, where each P` is a permutation matrix (∈ BB∗
by Theorem 2), H is a horizontal step matrix (∈ B by Lemma I.2), and V is a vertical step matrix (∈ B∗ by
Corollary I.3). Moreover, by Lemma G.7, P2 ∈ B∗B, so H,P2,V can be combined to obtain HP2V ∈ (BB∗)2.
By Lemma H.2, S ∈ (BB∗)4.

Corollary I.4. Let R be an n× n matrix of rank r. Then R ∈ (BB∗)8r4 .

Proof. We can decompose R as R = GH∗ where G,H are n× r matrices. With appropriate zero-padding,
both of these can be made into n× n matrices with at most rn NNZ. The proof follows immediately from
Theorem 3 and Lemma H.2.

33

J Example of K-matrix representation of structured matrices and
Comparison to BP Hierarchy

In this appendix, we show explicitly how some common structured matrices (e.g. originating from fast
transforms) can be represented as K-matrices. We also draw comparisons between the BB∗ hierarchy and the
BP hierarchy introduced by Dao et al. (2019).

Lemma J.1. Let Fn be the Discrete Fourier Transform of size n. Then Fn ∈ (BB∗)2.

Proof. From Parker (1995), we can express Fn as Fn = B P, where B ∈ B and P is a permutation (the bit
reversal permutation). From Theorem 2, P ∈ BB∗. Hence, by Lemma H.2, Fn ∈ (BB∗)2.

Lemma J.2. Let Hn be the Hadamard Transform of size n. Then Hn ∈ BB∗.

Proof. Hn ∈ B, so trivially Hn ∈ BB∗.

Lemma J.3. Let Sn be the Discrete Sine Transform of size n. Then Sn is the real part of some matrix in
(BB∗)2.

Proof. As described in Makhoul (1980), Sn can be performed as a scaled permutation (separating the even
and odd indices of the input, and reversing and negating the odd indices) composed with Fn. Therefore, we
may decompose Sn as Sn = B P2 D P1, where P1,P2 are permutations, B ∈ B, and D is a diagonal matrix.
P2 D P1 is simply a permutation matrix with scaled entries, which can be equivalently expressed as D′ P′

for some diagonal matrix D′ and permutation P′. By Lemma H.1, B D′ ∈ BB∗. By Theorem 2, P′ ∈ BB∗.
Hence, by Lemma H.2, Sn ∈ (BB∗)2.

Remark J.4. An analogous argument shows that the Discrete Cosine Transform is also the real part of some
matrix in (BB∗)2.

Lemma J.5. Let Cn be an n× n circulant (convolution) matrix. Then Cn ∈ BB∗.

Proof. Using Theorem 2.6.4 of Pan (2001), we can express Cn as Cn = (Fn)
−1

DFn where Fn is the Discrete
Fourier Transform and D is a diagonal matrix. (Fn)

−1
= B P (with B ∈ B, P a permutation), which implies

that Fn = (P)
−1

(B)
−1. Therefore

Cn = B P D (P)
−1

(B)
−1
.

The middle three factors have the effect of performing a permutation, scaling each element, and undoing the
permutation, which is equivalent to simply scaling by some diagonal matrix D′. Hence, we are left with

Cn = B D′ (B)
−1
.

By Lemma H.1, B D′ ∈ B. By Lemma H.6, (B)
−1 ∈ B∗. Hence, Cn ∈ BB∗.

Remark J.6. We can expand any n× n Toeplitz matrix Tn into a 2n× 2n circulant matrix (with upper left
n× n submatrix equal to Tn). Hence, Tn ∈ (BB∗)12 by Lemma J.5.

The Fastfood matrix class (Le et al., 2013) can be tightly captured in the BB∗ hierarchy:

Lemma J.7. The product SHDPHB where S,D,B are diagonal matrices, H is the Hadamard transform,
and P is a permutation matrix, is in (BB∗)2.

Proof. We have shown in Lemma J.2 that H ∈ B. Since H is symmetric, we also have H = HT ∈ B∗. As B
and B∗ are closed under diagonal multiplication (Lemma H.1), SHD ∈ B and HB ∈ B∗. Lemma G.7 shows
that P ∈ B∗B. We therefore conclude that SHDPHB ∈ (BB∗)2.

The two classes of matrices introduced in Moczulski et al. (2016), called AFDF and ACDC, are also
tightly captured in the BB∗ hierarchy:

34

Lemma J.8. Let AF−1DF be a product of a diagonal matrix A, the inverse Fourier transform F−1, another
diagonal matrix D, and the Fourier transform F. Then AF−1DF ∈ BB∗.

Let AC−1DC be a product of a diagonal matrix A, the inverse cosine transform C−1, another diagonal
matrix D, and the cosine transform C. Then AC−1DC = <(M1)<(M2) for some matrices M1,M2 ∈ (BB∗)2.

Proof. We have argued in Lemma J.5 that F−1DF ∈ BB∗. Since BB∗ is closed under diagonal multiplication
(Lemma H.1), we conclude that AF−1DF ∈ BB∗.

We have shown that C is the real part of some matrix in (BB∗)2, so C−1 is the real part of some matrix
in (BB∗)2 as well. Since BB∗ is closed under diagonal multiplication (Lemma H.1), we conclude that AC−1

and DC are both real parts of some matrices in (BB∗)2, and thus their product has the form <(M1)<(M2)
for some M1,M2 ∈ (BB∗)2.

Remark J.9. Within each butterfly factor matrix of the DFT (excluding the bit reversal permutation) and
the Hadamard transform, the columns are pairwise orthogonal and have norm 2. Hence, we can divide all
factors by

√
2 to make orthogonal factor matrices. To counteract this scaling, we can add a diagonal matrix

with
√

2
log2(n) =

√
n in all entries to the factorization. By doing this we can place all of the above transforms

in the OBB hierarchy (defined in Appendix K) with the same width and expansion factor.

J.1 Multi-dimensional transforms
Here, we show that, using larger matrices, we are able to similarly capture multi-dimensional versions of the
above transforms.

Lemma J.10. Let F2
n be the 2-dimensional Discrete Fourier Transform (represented as an n2 × n2 matrix).

Then F2
n ∈ (BB∗)2.

Proof. The separation property of the 2-D DFT allows us to express its action on an n× n matrix as the
composition of a 1-D DFT on each of its rows and a 1-D DFT on each of its columns. If we view the 2-D
DFT as an n2 × n2 matrix, its input and outputs will both be column vectors of size n2. As our convention,
we list the entries of the input vector in the row-major order corresponding to the n× n input matrix. Then,
we consider the 2-D DFT in four steps, where the first two steps perform the 1-D DFT row-wise, and the
second two steps perform the 1-D DFT column-wise:

Step 1: Permute the columns:
We permute the columns (with a bit reversal permutation), which performs a bit reversal permutation on

each row. Viewing the input as a vector, this step corresponds to left multiplication by a permutation matrix
Pc that permutes the entries of each chunk of size n of the input vector. Step 2: Multiply each row by a
butterfly matrix

Since the entries of the input were listed in row major order, this step is achieved through multiplication
by a block diagonal matrix of n butterfly matrices of size n, which can be viewed as a product of butterfly
factor matrices B

(n2)
n . . .B

(n2)
n
2

B
(n2)
2 .

Step 3: Permute the rows:
We permute the rows (with a bit reversal permutation), which performs a bit reversal permutation on

each column. This corresponds to left multiplication by a permutation matrix Pr. Since we are permuting
the rows, Pr permutes the entries at the granularity of each n-chunk. Since Steps 1 and 2 each performed an
identical computation to each n-chunk we can move this row permutation before Step 2, combining Pc and
Pr into a single permutation P.

Step 4: Multiply each column by a butterfly matrix
Consider multiplication by the first factor matrix. In each row, this matrix is taking linear combinations

of adjacent column entries. In our length-n2 vector, these entries will be exactly n indices apart. Therefore
this multiplication can be handled by a butterfly factor matrix B

(n2)
2n . Similarly, we find that this butterfly

multiplication can be expressed as multiplication by a product of butterfly factor matrices B
(n2)
n2 . . .B

(n2)
n2

2

B
(n2)
2n .

Combined with the factor matrices from Step 2, these form a butterfly matrix B of size n2.
In all, we see that the 2-D DFT may be realized as multiplication by a permutation matrix P followed by

multiplication by a butterfly matrix B. The same argument as Lemma J.1 shows that F2
n ∈ (BB∗)2.

35

Remark J.11. An analogous argument (using the separation property of the respective transforms) can be
used to argue that 2-D Discrete Sine and Discrete Cosine transforms are in (BB∗)2, and that 2-D Hadamard
Transforms are in BB∗.

Lemma J.12. Let C2
n be a 2-dimensional convolution matrix. Then C2

n ∈ BB∗.

Proof. We can express a 2-D convolution matrix as C2
n = (F2

n)−1DF2
n, where D is diagonal, F2

n is the 2-D
Fourier transform and (F2

n)−1 is the inverse 2-D Fourier transform. From the proof of Lemma J.10, we see
that that we can express F2

n (and similarly (F2
n)−1) as the product of a butterfly matrix and a permutation

matrix. The rest of the argument is analogous to the proof of Lemma J.5.

Remark J.13. Using an inductive argument, we can show that all k-dimensional (k ∈ Z) variants of
the above transforms, expressed as nk × nk matrices are contained in BB∗ or (BB∗)2. To do this, we use
the separation property of the transforms to break them into a k − 1-dimensional transform (the inductive
hypothesis) followed by a 1-dimensional transform.

K The Orthogonal Kaleidoscope Hierarchy
Through practical application of the butterfly matrices, it has been found useful to constrain them in
orthogonality. In Section K.1 we will modify the existing kaleidoscope hierarchy to create the orthogonal
kaleidoscope hierarchy OBB. Then, in Section K.2, we will argue that all orthogonal matrices, and as a result
all matrices, can also be expressed in this hierarchy in O(n) width. Lastly, in Section K.3, we will argue that
permutation matrices and sparse matrices also exist in this hierarchy in O(1) width, which in turn implies a
corresponding result for matrices with low-depth arithmetic circuits.

K.1 Definition
The definition of the orthogonal butterfly is identical to the original butterfly, with the constraint that all
butterfly factors are orthogonal. We specify this definition below:

Definition K.1 (Analog of Definition 2.1). An orthogonal butterfly factor of size k ≥ 2 (denoted as B̃k)
is a butterfly factor that is also orthogonal.

Definition K.2 (Analog of Definition 2.3). An orthogonal butterfly matrix of size n (denoted as B̃(n))
is a butterfly matrix with all butterfly factor matrices being orthogonal.

Note that the above definition implies that an orthogonal butterfly matrix, as well as its conjugate
transpose, is orthogonal.

The orthogonal hierarchy definition nearly mimics the original hierarchy Definition 2.4, as follows:

Definition K.3.

• We say that an n× n matrix M ∈ B̃ if we can express M = B̃(n).

• We say that an n× n matrix M ∈ B̃∗ if we can express M =
[
B̃(n)

]∗
.

• We say that an n× n matrix M ∈ OBB if we can express M = M1DM2 for some M1 ∈ B̃,M2 ∈ B̃∗,
and diagonal matrix D. Note that D need not be full rank.

• Width w and expansion e in (OBB)we mimic the same definition as in the original hierarchy, using
OBB instead of BB∗, such that E ∈ (OBB)w.

By padding if necessary, we will assume that n is a power of 2.

36

K.2 Expressivity
In this subsection we prove that all orthogonal (resp. unitary) matrices are contained in OBBn. To do this,
we consider the class of Householder reflections, given by I− 2uu∗ for any unit vector u (Householder, 1958):

Lemma K.1. All Householder reflections are in OBB with inner diagonal matrix I.

We will prove this lemma shortly. First, we use this lemma to present a decomposition for all orthogonal
(resp. unitary) matrices.

Lemma K.2. Let M be an n× n orthogonal/unitary matrix. Then M ∈ (OBB)n−1.

Proof. We consider the QR decomposition of M. It is known that we can compose M into a product of n− 1
Householder reflections and an orthogonal/unitary diagonal matrix (Householder, 1958).10 From Lemma K.1,
each Householder reflection is in OBB.

To complete the proof, we argue that R can be folded into the rightmost butterfly matrix. Let Q1 be the
rightmost butterfly factor matrix in Q (∈ B̃

(n)
n). Right multiplication of Q1 by R scales each columns of Q1

by some c ∈ C with ||c|| = 1 (R is unitary diagonal). This preserves both the sparsity pattern of Q1 and
the orthogonality of its columns. Moreover, the norm of each column of Q1R is 1. Therefore, Q1R is an
orthogonal butterfly factor matrix, so M = QR ∈ (OBB)n−1, as desired.

We now return to the proof of Lemma K.1

Proof of Lemma K.1. Given u ∈ Cn (n a power of 2), let u0 = u[: n/2] ∈ Cn/2,u1 = u[n/2 :] ∈ Cn/2 denote
the first and second halves of u.

To show that H ∈ OBB with inner diagonal matrix I, we proceed by induction. The base case for n = 2
is trivial. It suffices to show that there exist unitary butterfly factors L,R such that LHR has the form[
In/2 − 2v0v

∗
0 0

0 In/2 − 2v1v
∗
1

]
for some unit vectors v0,v1 ∈ Cn/2.

Define

(v0[i],v1[i]) =

(

u0[i]√
|u0[i]|2+|u1[i]|2

, u1[i]√
|u0[i]|2+|u1[i]|2

)
if |u0[i]|2 + |u1[i]|2 6= 0

(1, 0) otherwise
. (5)

It is easily checked that
v0[i]∗v0[i] + v1[i]∗v1[i] = 1

v0[i]∗u0[i] + v1[i]∗u1[i] =
√
|u0[i]|2 + |u1[i]|2

v1[i]u0[i]− v0[i]∗u1[i] = 0

. (6)

We choose
L =

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]
and R = L∗. L,R are (permuted) direct sums of blocks of the form

[
v0[i]∗ v1[i]∗

v1[i] −v0[i]

]
, which are orthogonal

by construction (via (5)). Hence, L ∈ B̃
(n)
n and R ∈ (B̃∗)

(n)
n . Further,

LHR =

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

](
I− 2

[
u0

u1

] [
u0

u1

]∗)[Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]∗
= I− 2

[
Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

] [
u0

u1

] [
u0

u1

]∗ [Diag(v∗0) Diag(v∗1)
Diag(v1) Diag(−v0)

]∗
= I− 2

[
v∗0 ◦ u0 + v∗1 ◦ u1

v1 ◦ u0 − v0 ◦ u1

]
︸ ︷︷ ︸

w

[
v∗0 ◦ u0 + v∗1 ◦ u1

v1 ◦ u0 − v0 ◦ u1

]
︸ ︷︷ ︸

w

∗

,

10Q is the (orthogonal/unitary) product of n− 1 Householder reflections. R, the remaining upper triangular matrix after
performing these reflections, is itself orthogonal/unitary, and therefore diagonal.

37

where ◦ denotes the Hadamard product. From (6)

w[i] =

{√
|u0[i]|2 + |u1[i]|2 i ∈ [n/2]

0 i ∈ [n/2 : n]

Denoting the first half of this vector by w0 ∈ Cn/2, we have

LHR =

[
I− 2w0w

∗
0 0

0 I

]
,

where ‖w0‖2 = ‖u‖2 = 1. The result follows inductively.

As an immediate corollary, we can use Singular Value Decomposition to obtain a factorization for an
arbitrary n× n matrix.

Corollary K.3. Let M be an arbitrary n× n matrix. Then, M ∈ (OBB)2n−1, where all but one matrix in
the decomposition is orthogonal (unitary).

Proof. By employing Singular Value Decomposition, we can decompose M as M = UΣV∗, where U,V∗

are orthogonal and Σ is diagonal. By Lemma K.2, U,V∗ ∈ (OBB)n−1, and trivially Σ ∈ OBB. Hence,
M ∈ (OBB)2n−1. Note that Σ is the only matrix in the decomposition that is not orthogonal (unitary).

K.3 Constructions
We show that we can construct s-sparse matrices in the OBB hierarchy with the same width as the BB∗
hierarchy. The proof follows a structure to that of Theorem 3. We begin by arguing about permutation and
step matrices, then using the same factorization to argue that matrices with at most n NNZ are contained
in (BB∗)4. Then, we will appeal to a modified sum closure lemma to extend the argument to matrices of
general s NNZ. Similar to Appendix F, we can use these results to place all matrices with low-depth circuits
for matrix vector multiplication in the OBB hierarchy.

K.3.1 Permutations

We begin by presenting the argument that permutations are included in OBB as a corollary to Theorem 2.

Corollary K.4. Let P be a permutation matrix. Then P ∈ B̃B̃∗.

Proof. We appeal to the decomposition from Theorem 2, noting that all butterfly factor matrices constructed
in the proofs of Lemmas G.3 and G.1 are permutation matrices, and thus are orthogonal. Hence, P ∈ OBB
where the inner diagonal matrix is I.

Similarly, the construction of Lemma G.7 also show that permutations are included in B̃∗B̃.

Corollary K.5. Let P be a permutation matrix. Then P ∈ B̃∗B̃.

To prove the containment of sparse matrices within the OBB hierarchy, we make use of the following
lemma.

Lemma K.6. Let P be a permutation matrix and D a diagonal matrix. Then there exist diagonal matrices
D′ and D′′ such that:

PD = D′P DP = PD′′.

Proof. Let σ be the permutation such that P[i, j] = δi,σ(j).
Define D′ such that D′[σ(j), σ(j)] = D[j, j]. Then, if i = σ(j):

(PD)[i, j] = P[i, j]D[j, j] = D′[σ(j), σ(j)]P[σ(j), j] = (D′P)[σ(j), j] = (D′P)[i, j].

Otherwise, if i 6= σ(j), then (PD)[i, j] = 0 = (D′P)[i, j]. Hence, PD = D′P.
Define D′′ such that D′′[j, j] = D[σ(j), σ(j)]. An analogous argument to above shows that DP = PD′′.

38

K.3.2 Step Matrices

In the BB∗ hierarchy (Lemma I.2), we were able to show that horizontal step matrices are butterfly matrices.
Here, we present a similar result for the OBB hierarchy.

Lemma K.7. Let H be an n× n horizontal step matrix. Then we can decompose H = DO, where D is a
diagonal matrix and O ∈ B̃.

Proof. Throughout the proof, we make reference to the original horizontal step matrix construction given in
Lemma I.2 and its proof.

To begin, we show that an arbitrary 2k × 2k butterfly factor H2k in the decomposition of H can be
expressed as the product of a diagonal matrix and an orthogonal butterfly factor. Since a butterfly factor is
direct sum of 2× 2 matrices, there is a permutation matrix P2k such that conjugation of H2k by P2k gives a
block diagonal matrix H′2k of n2 2× 2 matrices, i.e.

P2kH2kP∗2k = H′2k .

(See Figure 10 for an illustration.) Specifically, P2k is the permutation where:

Ps[2i, :] = eTi Ps[2i+ 1, :] = eTi+n
2
.

1

1

1

1

1

1

1

1

P8 H8

1

1

1

1

1

1

1

1

P∗8

=

H′8

Figure 10: Block diagonalization of H8

We argue that each of these 2× 2 blocks can be decomposed into a diagonal matrix times an orthogonal
matrix. Note that the butterfly factor matrices constructed in the proof of Lemma I.2 each have at most
one non-zero entry per column. Hence, there are 4 cases to consider. Note that matrices with at most one
non-zero entry are exhausted by Cases 1 and 2.

Case 1:
[
a 0
0 b

]
=

[
a 0
0 b

]
︸ ︷︷ ︸

D

[
1 0
0 1

]
︸ ︷︷ ︸

O

Case 2:
[
0 a
b 0

]
=

[
a 0
0 b

]
︸ ︷︷ ︸

D

[
0 1
1 0

]
︸ ︷︷ ︸

O

Case 3:
[
a b
0 0

]
=

[√
a2 + b2 0

0 0

]
︸ ︷︷ ︸

D

[
a√

a2+b2
b√

a2+b2
b√

a2+b2
−a√
a2+b2

]
︸ ︷︷ ︸

O

, a, b 6= 0

Case 4:
[
0 0
a b

]
=

[
0 0

0
√
a2 + b2

]
︸ ︷︷ ︸

D

[
b√

a2+b2
−a√
a2+b2

a√
a2+b2

b√
a2+b2

]
︸ ︷︷ ︸

O

, a, b 6= 0

39

In the last two cases, O is a 2×2 rotation matrix, which is commonly known to be orthogonal. Assume that
we perform the above decomposition on all of the blocks of H′2k in parallel, therefore expressing H′2k = D′O′.
We now have

H2k = P∗2kD′O′P2k .

By Lemma K.6, we can rewrite this as
H2k = D′′P∗2kO′P2k .

Note that P∗2kO′P2k is the product of three orthogonal matrices, and thus orthogonal. Additionally, the
construction of P2k ensures that P∗2kO′P2k is butterfly factor.11 Hence, H2k can be expressed as the product
of a diagonal matrix and an orthogonal butterfly factor, as desired.

Now, we show that this decomposition of butterfly factors implies Lemma K.7. By performing this
decomposition in parallel on each butterfly factor, we conclude that any butterfly factor matrix H

(n)

2k
of H

can be decomposed as H
(n)

2k
= D2kO

(n)

2k
.12

We complete the argument by induction on n. The base case n = 2 holds by the observation about
butterfly factor matrices above. Assume that any horizontal step matrix of size n

2 ×
n
2 can be expressed as a

diagonal matrix times an orthogonal butterfly matrix. Now, consider the n× n horizontal step matrix H.
From Lemma I.2, H can be expressed as

H = B(n)
n

[
H1 0
0 H2

]
,

where H1,H2 are n
2 ×

n
2 horizontal step matrices. By our inductive hypothesis,

H = B(n)
n D1

[
O1 0
0 O2

]
,

where D1 is diagonal and O1,O2 are n
2 ×

n
2 matrices in B̃. However, B

(n)
n D1 is a butterfly factor, and

therefore can be expressed as DnO
(n)
n . Therefore,

H = DnO(n)
n

[
O1 0
0 O2

]
= DnO,

with O ∈ B̃, as desired.

Just as with the BB∗ hierarchy, the decomposition of vertical step matrices falls out as an immediate
corollary to the horizontal step matrix proof.

Corollary K.8. Let V be a vertical step matrix. Then we can decompose V = O∗D, where D is a diagonal
matrix and O∗ ∈ B̃∗.

K.3.3 Sparse Matrices

Now that we have argued about the decomposition of permutation and step matrices in the OBB hierarchy,
we can leverage the construction from Lemma I.1 to argue about matrices with at most n NNZ.

Corollary K.9. Let S be an n× n matrix with at most n NNZ. Then, S ∈ (OBB)4.

Proof. We use the construction from Lemma I.1, along with Lemma K.7 and Corollary K.8, to express S as:

S = O1O
′
1︸ ︷︷ ︸

P1

D2O2︸ ︷︷ ︸
H

O3O
′
3︸ ︷︷ ︸

P2

O′4D4︸ ︷︷ ︸
V

O5O
′
5︸ ︷︷ ︸

P3

,

11Conjugation by P2k is an isomorphism from 2k × 2k butterfly factors onto block diagonal matrices with 2k−1, 2× 2 blocks.
Therefore, conjugation by P−1

2k
= P∗

2k
maps a block diagonal matrix to a butterfly factor.

12Note that a block diagonal matrix composed of orthogonal matrices is, itself, orthogonal.

40

with each Oi ∈ B̃, each O′j ∈ B̃∗, and each Dk diagonal. Since P2 is a permutation, by Corollary K.5, we
can write it as Õ3

′
Õ3 for some Õ3

′ ∈ B̃∗ and Õ3 ∈ B̃. Moreover, noting that O′1 and O5 are permutations,
we make use of Lemma K.6 to re-express S as:

S = O1D
′
2O
′
1︸ ︷︷ ︸

M1

O2Õ3
′︸ ︷︷ ︸

M2

Õ3O
′
4︸ ︷︷ ︸

M3

O5D
′
4O
′
5︸ ︷︷ ︸

M4

.

Note that each M` ∈ OBB. Hence, S ∈ (OBB)4, as desired.

Just as in Appendix I, we would like to extend this orthogonal-based construction to capture matrices of
general sparsity. To accomplish this, we introduce an addition closure lemma analogous to Lemma K.10 for
the OBB hierarchy.

Lemma K.10. Let A1, . . . ,Am be k × k matrices in (OBB)we then
∑m
i=1 Ai ∈ (OBB)mw4e .

With Lemma K.10, we arrive at the following Corollary on general orthogonal sparsity.

Corollary K.11. Let S be an n× n matrix with s NNZ. Then, S ∈ (OBB)
4d s

ne
4 .

Proof. Just as in the proof of Theorem 3, we accomplish this using a sum of
⌈
s
n

⌉
matrices of at most n NNZ.

For handling the sum of matrices, we need to appeal to Lemma K.10.

To conclude the argument, we give the proof of Lemma K.10.

Proof of Lemma K.10. For each 1 ≤ i ≤ m, let EAi ∈ Fek×ek be defined such that Ai = SEAiS
∗ (with S as

in Definition 2.4). Note that EAi
∈ (OBB)w. Consider matrices of the form:

Iek 0 0 EAi

0 Iek 0 0
Iek 0 0 -EAi

0 Iek 0 0

︸ ︷︷ ︸

Mi ∈ F4ek×4ek

=
√

2

[
1√
2
I2ek

1√
2
I2ek

1√
2
I2ek - 1√

2
I2ek

]
︸ ︷︷ ︸

O ∈ B̃
(4ek)
4ek

Iek 0 0 0
0 Iek 0 0
0 0 EAi 0
0 0 0 0

︸ ︷︷ ︸

K

Iek 0 0 0
0 Iek 0 0
0 0 0 Iek
0 0 Iek 0

︸ ︷︷ ︸

P ∈ B̃
(4ek)
2ek

Note that K, a block diagonal matrix composed of matrices in (OBB)w, is itself in (OBB)w since

K =

w∏
j=1

Iek 0 0 0
0 Iek 0 0
0 0 Oj 0
0 0 0 Iek

︸ ︷︷ ︸

Lj ∈ B̃

Iek 0 0 0
0 Iek 0 0
0 0 Dj 0
0 0 0 0

︸ ︷︷ ︸

Diagonal

Iek 0 0 0
0 Iek 0 0
0 0 O′j 0
0 0 0 Iek

︸ ︷︷ ︸

Rj ∈ B̃∗

,

where each Oj is a ek × ek matrix in B̃, and each O′j is a ek × ek matrix in B̃∗. Lw (the leftmost factor)
is a block diagonal matrix composed of 4 ek × ek matrices in B̃. Therefore, we can fold O into this factor
(since a butterfly factor in B̃

(4ek)
4ek was not yet used in Lw) to conclude that OLw ∈ B̃. Similarly, since no

btterfly factor from B̃
(4ek)
2ek has been used in R1, we may fold P into R1 to conclude that R1P ∈ B̃∗. Finally,

we address the scalar multiple of
√

2 by multiplying all entries of any diagonal matrix in the decomposition
of K by

√
2. Hence, we may conclude that Mi ∈ (OBB)w.

Through repeated application (m times) of the identity
I A1 0 B1

0 I 0 0
I A2 0 B2

0 I 0 0

I 0 0 C1

0 I 0 0
I 0 0 C2

0 I 0 0

 =

I A1 + B1 0 C1

0 I 0 0
I A2 + B2 0 C1

0 I 0 0

 , (7)

41

we see that
m∏
i=1

Mi =

Iek

∑m
i=2 EAi

0 EA1

0 Iek 0 0

Iek -EAm
+
∑m−1
i=2 EAi

0 EA1

0 Iek 0 0

︸ ︷︷ ︸

M ∈ F4en×4en

.

Therefore, M ∈ (OBB)mw. Next, we note that

m∑
i=1

Ai = SM

0 Iek 0 Iek

Iek 0 Iek 0
0 Iek 0 -Iek

Iek 0 -Iek 0

︸ ︷︷ ︸

Q

ST .

We would like to show that we can fold Q into the rightmost OBB factor of M. The rightmost matrix in
the decomposition of M is P. Note that

PQ =

0 Iek 0 Iek

Iek 0 Iek 0
Iek 0 -Iek 0
0 Iek 0 -Iek

 =
√

2

0 Iek 0 0

Iek 0 0 0
0 0 Iek 0
0 0 0 Iek

︸ ︷︷ ︸

B̃
(4ek)
2ek

[
1√
2
I2ek

1√
2
I2ek

1√
2
I2ek - 1√

2
I2ek

]
︸ ︷︷ ︸

B̃
(4ek)
4ek

.

Just as earlier, the factor of
√

2 can be multiplied through any diagonal matrix. Also, these two orthogonal
butterfly factor matrices can be folded into the the rightmost R matrix (the decomposition of K above does
not use these two, rightmost butterfly factors). Hence,

∑m
i=1 Ai ∈ (OBB)mw4e , as desired.

K.3.4 Arithmetic Circuits

Just as in Theorem 1, we can use the sparsity result in Lemma K.10 to place matrices with low-depth (linear)
arithmetic circuits for matrix vector multiplication in the OBB hierarchy.

Corollary K.12. Let M be an n× n matrix such that matrix-vector multiplication of M times an arbitrary
vector v can be represented as a be a linear arithmetic circuit C comprised of s gates (including inputs) and
having depth d. Then, M ∈ (OBB)

O(d)
O(s

n).

Proof. We use the construction given in the proof of Theorem 1. Corollaries K.9 and K.4 allow us to recover
the same width and expansion factor with the OBB hierarchy.

L ReLU network with structured weight matrices
We show that for any neural network with ReLU nonlinearities and whose weight matrices have arithmetic
circuits with few gates, its linear network counterpart (obtained by removing all the ReLU’s) also has an
arithmetic circuit with not too many more gates. This implies that in trying to find the smallest arithmetic
circuit augmented with ReLU gates to represent a ReLU network, one might as well try to find the smallest
arithmetic circuits that represent the matrix-vector multiplication of each weight matrix.

Proposition 2. Consider a neural network architecture consisting of L layers with weight matrices W1, . . . ,WL ∈
Fn×n and ReLU nonlinearity in between.

Suppose that matrix-vector multiplication of Wi times an arbitrary vector v can be represented as a
linear arithmetic circuit with si gates (including inputs). Then there exists an arithmetic circuit augmented
with ReLU gates with

∑L
i=1 si + Ln total gates that computes the output ReLU(WL(. . .ReLU(W1v))) of the

network for an arbitrary input vector v.

42

Conversely, if there is an arithmetic circuit augmented with ReLU gates with s total gates that computes
all the activations of the network ReLU(W1v), . . . ,ReLU(WL . . .ReLU(W1v)) for an arbitrary input v, then
there exists an arithmetic circuit augmented with ReLU gates with 2s+ 2Ln total gates that computes the
activations of the network without ReLU W1v, . . . ,WL . . .W1v.

Proof of Proposition 2. To compute the output of the network ReLU(WL(. . .ReLU(W1v))), we first compute
the matrix-vector product W1v with an arithmetic circuit of s1 gates by assumption, and use n other ReLU
gates to compute the pointwise ReLU. Then we repeat the process for layer 2, 3, . . . , L, using the arithmetic
circuits of W1, . . . ,WL and Ln additional gates for ReLU. In total we obtain an arithmetic circuit augmented
with ReLU gates with

∑L
i=1 si + Ln total gates.

Conversely, to build an arithmetic circuit augmented with ReLU gates to compute W1v, . . . ,WL . . .W1v,
we pass v and then −v through the circuit that computes ReLU(W1x) for an arbitrary x to get ReLU(W1v)
and ReLU(−W1v). Noting that x = ReLU(x)−ReLU(−x), we can use n additional gates to compute W1v
from ReLU(W1v) and ReLU(−W1v).

Repeat the process for layer 2, 3, . . . , L (for example, pass W1v and −W1v to the circuit that computes
W2x for an arbitrary x on layer 2). Overall we need to double the circuits that computes all the activations
of the network ReLU(W1v), . . . ,ReLU(WL . . .ReLU(W1v)), requiring 2s gates. We also need n additional
gates per layer to compute the negation of the input to that layer (e.g. computing −v from v), and n
additional gates per layer to subtract the output of the ReLU circuit (e.g. computing W1v from ReLU(W1v)
and ReLU(−W1v).) Therefore we can construct an arithmetic circuit augmented with ReLU gates with
2s+ 2L total gates that computes the activations of the network without ReLU W1v, . . . ,WL . . .W1v.

We now prove an asymptotic bound on the VC dimension of a ReLU network whose weight matrices are
kaleidoscope matrices with bounded width and expansion.

Proposition 3. Let F be the class of ReLU neural networks consisting of L layers, where each layer is a
K-matrix with width and expansion bounded by some constant C. Suppose that the network has W total
parameters. Let signF denote the corresponding classification functions: {x 7→ sign f(x) : f ∈ F}. Then this
class has VC dimension:

VCdim(signF) = O(LW logW).

We leverage the result from Thomas et al. (2018) for the case where the entries of the weight matrices
interact multiplicatively, but with polynomially bounded degrees. This proof is similar to the VC bound for
ReLU networks whose weight matrices are butterfly matrices (Dao et al., 2019).

Proof. To use Theorem 3 of Thomas et al. (2018), we simply need to check that the entries of the linear layer,
as polynomials of the parameters, has degree at most c1mc2

l for some universal constant c1, c2 > 0, where ml

is the size of output of the l-th layer. If the network weight matrices are K-matrices with bounded width and
expansion, each weight matrix is a product of at most c3 logml sparse factors, for some universal constant
c3 > 0. This means that the degree is polynomially bounded, which satisfies the condition of the theorem.
Therefore the VC dimension is bounded to be almost linear in the number of parameters:

VCdim(signF) = O(LW logW).

M Arithmetic Circuit Primer
We give a quick overview of arithmetic circuits. This is a model of computation that has been studied for
numerous computational problems (and is the basic model for algebraic complexity theory). For our purposes,
we will exclusively focus on arithmetic circuits for the matrix-vector multiplication problem. For a more
detailed exposition, the reader is referred to the standard book on this topic (Bürgisser et al., 2013).

Definition M.1 (Arithmetic Circuits). An arithmetic circuit that computes y = Ax (for A ∈ Fm×n) has n
input gates (corresponding to x[0], . . . ,x[n− 1]) and m output gates (corresponding to y[0], . . . ,y[m− 1]).
All the internal gates correspond to addition, subtraction, multiplication and division13 over the underlying

13Here we assume all the gates have two inputs.

43

field F. The circuit is also allowed to use constants from F for ‘free.’ The definition of the internal gates can
depend on A (as well as x of course). In other words, one can ‘bake’ the knowledge about A into the circuit.

The size s of a circuit is n plus the number of addition, multiplication, subtraction and division gates used
in the circuit. The depth d of a circuit is the minimum number of layers such that all gates in a given layer
take as its input gates from previous layers.14

One drawback of arithmetic circuits (especially for infinite fields e.g. F = R, which is our preferred
choice in this work) is that they assume operations over F can be performed exactly. In particular, it ignores
precision issues involved with real arithmetic. Nonetheless, this model turns out to be a very useful model in
reasoning about the complexity of doing matrix-vector multiplication for any family of matrices.

Perhaps the strongest argument in support of arithmetic circuits is that a large (if not an overwhelming)
majority of matrix-vector multiplication algorithm also imply an arithmetic circuit of size comparable to the
runtime of the algorithm (and the depth of the circuit roughly correponds to the time taken to compute it
by a parallel algorithm). For example consider the obvious algorithm to compute Ax (i.e. for each i ∈ [m],
compute y[i] as the sum

∑n−1
i=0 A[i, j]x[j]). It is easy to see that this algorithm implies an arithmetic circuit

of size O(nm) and depth O(log n).15
One thing to note about the arithmetic circuit above is that all the multiplications involve at least one

input that is a constant from F (recall that we can assume that the entries of A are constants that can be
used to build the circuit). This leads to the following important sub-class of arithmetic circuits:

Definition M.2 (Linear Arithmetic Circuits). An arithmetic circuit is called a linear arithmetic circuit if it
only uses addition, subtraction and multiplication. Further, every multiplcation has a fixed constant from F as
at least one of its two inputs. In other words, all gates in the circuit are linear functions of their inputs (i.e.
of the form ax+ by for fixed constants a, b ∈ F).

Intuitively for the matrix-vector multiplication, it makes sense to consider linear arithmetic circuits since
the final function we want to compute Ax is indeed a linear function of its inputs. For inifinite fields (e.g.
F = R or F = C), it turns out that this is essentially without loss of generality:

Theorem 4 ((Bürgisser et al., 2013)). Let F be an infinite field. Any (general) arithmetic circuit to compute
Ax over F of size s and depth d can be converted into a linear arithmetic circuit of size O(s) and depth O(d).

The above result implies that for asymptotic considerations, linear arithmetic circuits for matrix-vector
multiplication are equivalent to general arithmetic circuits.16

One important property of linear arithmetic circuits of depth d, which we will use in our arguments, is
that such a circuit can be equivalently represented as product of d sparse matrices (see the proof of Theorem 1
for the precise derivation17).

As mentioned earlier, a vast majority of efficient matrix vector multiplication algorithms are equivalent to
small (both in size and depth) linear arithmetic circuit. For example the FFT can be thought of as an efficient
arithmetic circuit to compute the Discrete Fourier Transform (indeed when one converts the linear arithmetic
circuit for FFT into a matrix decomposition,18 then each matrix in the decomposition is a butterfly factor,
with each block matrix in each factor being the same). For an illustration of this consider the DFT with
n = 4 as illustrated in Figure 11.

14The input layer corresponding to the input gates does not contriubte to the depth.
15The claim on the depth follow from the fact that each of the sums

∑n−1
i=0 A[i][j]x[j] can be computed in parallel. Further,

the sum for each i ∈ [m] can be done in log2 m depth by first computing the partial sums A[i][2j′]x[2j′] +A[i][2j′ + 1]x[2j′ + 1]
for all j′ ∈ [n/2] in parallel and recursively computing pair-wise sums till we are done.

16This follows from the fact that by definition any linear arithmetic circuit is also an arithmetic circuit; the other direction
follows from Theorem 4.

17To the best of our knowledge, this connection was explicitly made by De Sa et al. (2018) though the connection seems to be
folklore.

18Using the conversion mentioned in the paragraph above.

44

1 1 1 1

1 -i -1 i

1 -1 1 -1

1 i -1 -i

Figure 11: DFT of order 4.

Figure 12 represent the arithmetic circuit corresponding to FFT with n = 4.

v0 v1 v2 v3

+ + + +

+ + + +

1
1 1 11 −1 1

−1

1
1 1 11 −1 −i

i

w0 w1 w2 w3

+

x

a

y

b

ax+ by

Semantics of a gate

Figure 12: Arithmetic circuit for 4-DFT from Figure 11.

Finally, Figure 13 represents the arithmetic circuit of Figure 12 as a product of a butterfly matrix and
(the bit-reversal) permutation. We note that our generic arithmetic circuit to decomposition into BB∗ is not
as tight as in Figure 13.

1 1

1 -i

1 -1

1 i

B
(4)
4

1 1

1 -1

1 1

1 -1

B
(4)
2

1

1

1

1

P

Figure 13: Decomposition of DFT of Figure 11 via the arithmetic circuit of Figure 12.

One reason for the vast majority of existing efficient matrix vector algorithms leading to (linear) arithmetic
circuits is that they generally are divide and conquer algorithms that use polynomial operations such as
polynomial multiplication or evaluation (both of which themselves are divide and conquer algorithms that use
FFT as a blackbox) or polynomial addition. Each of these pieces are well known to have small (depth and
size) linear arithmetic circuits (since FFT has these properties). Finally, the divide and conquer structure of
the algorithms leads to the circuit being of low depth. See the book of Pan (Pan, 2001) for a more elaborate
description of this connection.

45

In fact, the recent work of De Sa et al. (De Sa et al., 2018) makes this fact explicit and presents
the most general known structure on matrices that imply near-linear size linear arithmetic circuits for
the corresponding matrix vector multiplication. Their work combines two separate classes of structures
matrices– orthogonal polynomial transforms (Driscoll et al., 1997; Szegö, 1967) as well as matrices with
low displacement rank (Kailath et al., 1979; Olshevsky & Shokrollahi, 2000)– and presents a linear class
of linear arithmetic circuits to solve their matrix vector multiplication problem. We note that structured
matrices with low displacement rank have been used to replace fully connected layers in some neural network
architectures (Sainath et al., 2013; Thomas et al., 2018).

46

	1 Introduction
	2 A nearly-tight parameterization of all structured matrices
	2.1 Background: sparse factorization, butterfly matrices
	2.2 The kaleidoscope hierarchy
	2.3 All low-depth structured matrices are in the kaleidoscope hierarchy
	2.4 Extensions

	3 Empirical Evaluation
	3.1 Replacing hand-crafted structures
	3.1.1 Speech preprocessing
	3.1.2 Replacing CNN channel shuffle

	3.2 Learning a latent permutation
	3.3 Speeding up Inference

	4 Conclusion
	A Related Work
	A.1 Structured matrices in machine learning
	A.2 Sparse matrices
	A.3 Speech recognition from raw audio
	A.4 Learning permutations

	B Additional Experimental Details
	B.1 Speech preprocessing
	B.1.1 Experimental setup
	B.1.2 Model and evaluation
	B.1.3 Extension: Combining MFSC and kaleidoscope

	B.2 Replacing CNN channel shuffle
	B.2.1 Model architectures
	B.2.2 Experimental setup
	B.2.3 Additional results

	B.3 Learning permutations
	B.3.1 Dataset
	B.3.2 Model and Training

	B.4 Speeding up DynamicConv's inference
	B.4.1 Model architecture
	B.4.2 Training and evaluation
	B.4.3 Additional comparison with other structured matrices

	C Speed benchmark and implementation details
	D Synthetic matrix recovery
	E Properties of the BB* Hierarchy
	F Arithmetic Circuits in BB* Hierarchy
	G Permutations in BB*
	H BB* Closure Lemmas
	I Sparse Matrices in BB* Hierarchy
	J Example of K-matrix representation of structured matrices and Comparison to BP Hierarchy
	J.1 Multi-dimensional transforms

	K The Orthogonal Kaleidoscope Hierarchy
	K.1 Definition
	K.2 Expressivity
	K.3 Constructions
	K.3.1 Permutations
	K.3.2 Step Matrices
	K.3.3 Sparse Matrices
	K.3.4 Arithmetic Circuits

	L ReLU network with structured weight matrices
	M Arithmetic Circuit Primer

