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Abstract
Most previous studies of homegardens have used labor-intensive boots-on-the-ground plant surveys, owner questionnaires, and
interviews, limiting them to at most a few hundred homegardens.We show that automated analysis of publicly available imagery
can enable surveys of much greater scale that can augment these traditional data sources. Specifically, we demonstrate the
feasibility of using the high-resolution street-level photographs in Google Street View and an object-detection network
(RetinaNet) to create a large-scale high-resolution survey of the prevalence of at least six plant species widely grown in road-
facing homegardens in Thailand. Our research team examined 4000 images facing perpendicular to the street and located within
10m of a homestead, and manually outlined all perceived instances of eleven common plant species. A neural network trained on
these tagged images was used to detect instances of these species in approximately 150,000 images constituting views of roughly
one in every ten homesteads in five provinces of northern Thailand. The results for six of the plant species were visualized as
heatmaps of both the average number of target species detected in each image and individual species prevalence, with spatial
averaging performed at scales of 500 m and 2.5 km. Urban-rural contrasts in the average number of target species in each image
are quantified, and large variations are observed even among neighboring villages. Spatial heterogeneity is seen to be more
pronounced for banana and coconut than for other species. Star gooseberry and papaya are more frequently present immediately
outside of towns while dracaena and mango persist into the cores of towns.
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Introduction

The focus of this paper is homegardens, which have histori-
cally provided families with a location near the homestead to
grow a variety of plants important to their well-being (Idohou

et al. 2014). Fruits, vegetables, andmedicinal plants are grown
for home consumption, and plants for ornament, shade, and
other benefits, are also grown and maintained by family labor
(Cruz Garcia and Struik 2015; Lattirasuvan et al. 2010).
Typically comprising diverse species in multiple structures
with multiple functions, homegardens are considered to be
complex integrated agricultural ecosystems (Das and Das
2005; Fernandes and Nair 1986; Kumar and Nair 2004) and
traditional conservation systems (Galluzzi et al. 2010). Due to
their multifaceted importance and complexity, researchers
have conducted studies to understand homegardens’ multiple
benefits, including their potential to maintain and enhance
biodiversity (Clarke et al. 2014; Galluzzi et al. 2010; Trinh
et al. 2003), food security (Berti et al. 2004; Schreinemachers
et al. 2015), resilience (Colding and Barthel 2013), and sus-
tainable development (Weinberger 2013).

Most studies of homegardens have focused on compiling
comprehensive lists of species and quantifying species rich-
ness in a few dozen to a few hundred gardens, using boots-on-
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the-ground plant surveys and owner questionnaires and
interviews (Cruz Garcia and Struik 2015; George and
Christopher 2019; Jemal et al. 2018; Kabir and Webb 2008;
Mathewos et al. 2018; Pala et al. 2019; Panyadee et al. 2018;
Panyadee et al. 2019; Rayol et al. 2019; Serrano-Ysunza et al.
2018; Tadesse et al. 2019; Vibhuti et al. 2018; Webb and
Kabir 2009; Whitney et al. 2018; Woldeamanual et al. 2018;
Yamane et al. 2018). Sampling methods are frequently ran-
dom (George and Christopher 2019; Jemal et al. 2018;
Mathewos et al. 2018; Pala et al. 2019; Tadesse et al. 2019;
Yamane et al. 2018) and convenience sampling has also been
used in these homegarden studies (Panyadee et al. 2018;
Panyadee et al. 2019). Some studies focus in particular on
woody plants because they are stable across longer periods
of time and produce large amounts of useful fruits and leaves
(Panyadee et al. 2016). Many studies of woody plants in
homegardens conduct field inventories to count individual
occurrences (Jemal et al. 2018; Kabir and Webb 2008;
Molla and Kewessa 2015; Panyadee et al. 2016; Tadesse
et al. 2019), or conduct focused inventories within designated
study plots within the gardens (Pala et al. 2019; Shumi et al.
2018).

In this paper we build on our previous work (Ringland et al.
2019), to apply a technique that capitalizes on the availability
of an enormous collection of street-level images along road
networks - in Google Street View (GSV) - to conduct an
automated survey of a selected set of common species grown
in Thai homegardens. Our goal was to test if we can use GSV
and an object-detection network to accurately identify and
count instances of a significant number of commonly grown
plant species in Thai homegardens over a large geographic
region. We conducted this study in the hope that the large
quantity of data that could be produced by our approach could
be combined with that from detailed research on the ground to
inform attempts to understand multiple aspects of
homegardening practices, including: the significant variation
in garden composition across regions (Coomes and Ban 2004)
and by season (Cruz Garcia and Struik 2015); the factors that
influence the selection of particular species, such as the modes
of utilization of specific plants (Gajaseni and Gajaseni 1999)
and geographical location (Huai et al. 2011); and cultural
backgrounds and personal preferences (Srithi et al. 2012).

The computer vision tool we have developed to collect and
analyze the GSV images is also much faster than related al-
ternatives such as car surveys or manual GSV image analysis
(Berland and Lange 2017; Deus et al. 2016). This has allowed
us to create a survey capturing almost one million individual
instances of some of the most commonly found plant species
in road-facing homegardens in Thailand. As compared to field
inventories, we expect that our approach can save time and
money for homegarden research. This proof-of-concept study
is the first of its kind; this article provides information on
capabilities and limitations of this approach, and affirms the

potential of automated GSV image interpretation in
homegarden research.

Methods

Study area

The study area [Fig. 1] comprises five contiguous provinces of
northern Thailand: ChiangMai, Lamphun, Lampang, Phayao,
and Phrae (red-tinted region in the figure), with a total area of
just over 50,000 km2 (roughly 270 km by 320 km, from lon-
gitude 98.0° to 100.6°E, latitude 17.2° to 20.1°N), and a com-
bined population of just under 3.7 million as of 2011 (National
Statistical Office 2011). Topographically, this area consists
largely of plains where most inhabitants live separated by
sparsely inhabited mountain ranges which mostly run roughly
north-south. In the 17 provinces making up Thailand’s north-
ern region, 90.2% of the population lives in detached housing,
and 56% of the economically active population over age 15
works in skilled agriculture and fisheries. 74% of the popula-
tion over 10 years old engaged in some kind of agricultural
activity on their own lands (National Statistical Office 2011).
Climatically, northern Thailand is warm or hot year-round
with daily highs rarely lower than 27 °C, and daily lows usu-
ally above 18 °C except December to February. April is the
hottest month, when temperatures can reach 37 °C. There is a
nine-month rainy period from early March to early December
with peaks in late May and late August. Skies are predomi-
nantly overcast from mid-April to mid-October, and often
clear or partly so during the rest of the year (Cedar Lake
Ventures 2020) It can be easily verified by dropping into
GSV at random locations that almost every dwelling in this
region has a garden adjacent to it, frequently containing the
species detected in this study.

Panorama discovery and image acquisition

Since there is no public master list of available GSV imagery,
the task of finding all available panoramas in the region of
interest was accomplished by probing the GSV metadata ap-
plication programming interface (API), using URLs of the
form https://maps.googleapis.com/maps/api/streetview/
metadata?location=14.54173,104.74517&key = API_KEY_
HERE, which requests a panorama near latitude 14.54173°N,
longitude 104.74517°E. An API key can be obtained without
charge from Google. If a panorama exists close to the
specified latitude and longitude, this request returns the
panorama’s precise location, its month and year of capture,
and its unique “panoid” which can subsequently be used to
obtain imagery.

We performed panorama discovery by district (amphoe)
within the five provinces. In each district, starting with one
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or more randomly selected “seed” panoramas, we probed for
panoramas near previously discovered ones until the vicinity
of every discovered panorama had been thoroughly probed.
This activity is represented schematically as step 1 in Fig. 2,
which is a flow chart of our entire process. The effective road-
speed of panorama discovery was 60–80 km/h per process,
and we were able to run as many as eight processes on a single
machine and API key without being slowed by Google’s rate
limits on API requests. This gave a total effective road-speed
of 500–600 km/h. Based on spot-checks against the Street

View browser interface, we estimate that we discovered over
99% of the available current panoramas in this way. For the 63
districts of the five provinces examined in this paper, this
amounted to just over 2.5 million panoramas.

To restrict to homegardens, we downloaded images from
only those panoramas whose locations were within 10 m of
the center of a “settled” cell of the High Resolution Settlement
Layer (HRSL) (Facebook Connectivity Lab and Center for
International Earth Science Information Network Columbia
University 2016): steps 2 and 3 in Fig. 2. This is a worldwide

Fig. 1 The study area in northern Thailand, tinted orange in this map,
comprises the provinces of Chiang Mai, Lampang, Lamphun, Phayao,
and Phrae. Inset at upper left: the location of Thailand and the study area

in Southeast Asia. Use of main base map CC BY-SA 3.0 (Damm 2008).
Use of inset base map CC BY-SA 3.0 (Zuanzuanfuwa 2012)
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grid of cells, approximately 30 m across, that have been clas-
sified as “settled” or “not settled” based on automated analysis
of satellite imagery. For each district we either randomly se-
lected 3000 such panoramas, or chose all of them if there were
fewer than 3000. The resulting stratified random sample of
approximately 150,000 panoramas contains views of approx-
imately one tenth of all homesteads in the five-province re-
gion, based on a total population of 3.8 million and the na-
tional average household size of 3.1 persons (National
Statistical Office 2011).

We determined the compass heading of the road(s) at each
selected panorama by clustering the directions of nearby pan-
oramas, and used a script-driven headless browser to down-
load a 3840 × 2160 pixel view from the panorama facing per-
pendicularly to the road (randomly selecting which side), with
a 90-degree horizontal field of view. We also similarly chose
and downloaded an additional 4000 images to be used for
training and testing of the network. We ensured that the
4000 training/testing images encompassed multiple seasons
of image acquisition so that we captured seasonal variations
in appearance (such as flowering vs. non-flowering mango
trees) and lighting conditions (sunny and overcast, in
particular).

Image tagging

We chose 11 species of plants that are commonly grown in
homegardens in Thailand and that were not difficult for our
team of non-botanists to recognize. These were: 1) banana
(Musa sapientum), 2) coconut (Cocos nucifera), 3)
Dracaena fragrans, 4) galangal (Alpinia siamense), 5) jack-
fruit (Artocarpus heterophyllus), 6) mango (Mangifera
indica), 7) papaya (Carica papaya), 8) star gooseberry
(Phyllanthus acidus), and 9–11) a group of three species of
shrubs with bipinnate leaves comprising cha-om (Acacia

pennata), river tamarind (Leucaena leucocephala) and Pride
of Barbados (Caesalpinia pulcherrima), which were lumped
into a single class because it was initially difficult for us to tell
them apart. Mango, because of its significant phenological
changes (prolific blossoms), was actually split into two classes
(mango in bloom, and not) for training and detection. This set
of 11 species accounts for almost half of the most common
species found in a small-scale but highly detailed inventory of
homegarden species conducted at several sites in Phrae prov-
ince by Lattirasuvan et al. (2010).

We attempted to visually detect and manually outline every
instance of each of these classes in the set of training and test
images (step 4 in Fig. 2). In Fig. 3, we show the outlines (white
curves) drawn on one example image from the test set. We
found it to be cognitively least taxing to tag just a single
species on each pass through the image set. For quality con-
trol, each task was performed by two different taggers, and
discrepancies were resolved by the first author. Figure 3 also
shows the white rectangular bounding boxes of the human-
drawn outlines. These boxes are what was used to train the
network.

Network training and object detection

We initially experimented with two different convolutional
neural networks (CNNs), RetinaNet and YOLOv3 (Lin et al.
2018), for object detection and chose RetinaNet because it
greatly outperformed YOLOv3 in our trials. We used the im-
plementation available at https://github.com/fizyr/keras-
retinanet, which we modified to accommodate the input and
output formats requisite for our other scripts. We used the
ResNet-50 network as the backbone, training for 50 epochs
with 10,000 steps per epoch, and using an initial learning rate
of 10−5 (step 5 in Fig. 2). This took two days using an Nvidia
Titan V GPU. The objects detected by the trained CNN in the

Fig. 2 Methods flow chart
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example image of Fig. 3 are drawn in color and annotated with
the network’s confidence level in the detection, which can
range from 0 (“no confidence”) to 1 (“certainty”).

Of the 4000 tagged images, 350 were set aside for
testing and not used during the training of the CNN.
After training, we applied the network to the images in
the test set (step 6 in Fig. 2). To measure its effectiveness,
we calculated the average precision, APIoU = 0.5, on the
test set for each species. This metric, and its many vari-
ants, have become widely accepted as benchmarks of de-
tection network performance since its inclusion in the
PASCAL Visual Object Classes (VOC) Challenge
(Everingham et al. 2010). Average precision (AP) sum-
marizes the relationship between precision = # true detec-
tions/(# true detections + # false detections) and recall = #
true detections/(# true detections + # undetected in-
stances). Specifically it is the area under the least non-
increasing upper bound of the precision-recall curve,
which is parametrized by confidence level. Its maximum
possible, and ideal, value is 1. In computing the AP, a
detection is characterized as true if the predicted box
and the ground-truth box overlap to the extent that the
area of their intersection divided by that of their union
(Intersection over Union, IoU) is no less than some cho-
sen threshold. We chose 0.5 for this threshold. While
IoU = 0.5 may be considered low in some applications
(such as a self-driving car trying to avoid a pedestrian),
it is quite acceptable in ours, where merely detecting the

presence of an instance is the primary concern, rather than
localizing it very precisely in the image. The mean aver-
age precision (mAP) is the AP averaged over all species.

Application of the CNN and visualization of the results

The trained CNN was finally applied to the remaining set of
approximately 150,000 images (step 7 in Fig. 2). To visualize
the output of the network, we used kernel density estimation
(KDE) to compute local averages of quantities such as the
prevalence of each species and the number of species seen
in each image (step 8 in Fig. 2). For each point p in a dense
lattice of locations in the region, we evaluated the formula

KDE f pð Þ ¼
∑
i
f i K p; pið Þ

∑
i
K p; pið Þ

where fi is the value of the quantity of interest in the i
th image,

pi is the location of the i
th image, and K is the KDE kernel, for

which we chose a two-dimensional Gaussian function of the
distance between the evaluation point p and the location pi of
the i th image. Thus KDEf(p) is an average of the fi weighted
by their proximity to point p.

The standard deviation of the Gaussian kernel, or bandwidth,
was chosen based on the distance scale we wanted to average
over. For a map of the prevalence of a particular species, fi was

Fig. 3 In an image from the test set, we can compare the network-
detected objects (colored boxes) and the human-identified objects (white
outlines and bounding boxes). A mango tree, two coconut palms, a dra-
caena plant, and a jackfruit tree are correctly detected and well localized
by the network. A spurious coconut palm detection occurs on the right.

Latitude 18.320885°N, longitude 100.316757°E. Base image copyright
Google, Inc., 2019. Link: https://www.google.com/maps/@18.
3 2 0 8 8 5 1 , 1 0 0 . 3 1 6 7 5 7 3 , 3 a , 9 0 y , 1 2 9 . 1 1 h , 9 3 . 1 9 t / d a t a =
!3m6!1e1!3m4!1sLE0_Z9GS6V_ojV23Oxi6eA!2e0!7i13312!8i6656
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taken to be 1 if the species were present in image i, and 0 if not.
For a map depicting the average number of target species de-
tected in each image, fi is the number of distinct species detected
in image i. These local averages were visualized by creating a
map overlay in which the color corresponds to the value of
KDEf. Although a value of KDEf is defined at every point in
the study region, it is of little significance in places far from any
image locations: therefore the opacity of the overlay was set to a
Gaussian function of the distance to the closest image location,
with the same standard deviation as the KDE kernel, so that the
overlay is visible only where it is relevant.

Results

CNN performance

The AP of the CNN on the test set for most of our target
species is satisfactory, as shown in Table 1. Our mAP is at
the top of the range ofmean average precision of between 0.48
and 0.55 obtained with the same network on the COCO
benchmark dataset (Lin et al. 2018). Moreover, jackfruit is
the only species for which the AP is significantly below this
range, which can likely be attributed to its low prevalence in
the training set. The number of instances of each species
which were found in the training set is shown in Table 1.
We omitted the bipinnate-leaved shrub group (cha-om, river
tamarind, and Pride of Barbados) and galangal at this point in
our analysis because the false positive rates were deemed too
high at reasonable values of detection rates. This brought our
number of classes to seven.

To provide a more detailed picture of the performance of
the network that is pertinent to the particular use of the net-
work output we are making in the current paper, in Fig. 4 we
treat the network as a classifier of images - as positive or
negative for the presence of each species - and display the
numbers of true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) as a function of confi-
dence threshold. These plots illustrate the compromise that
must be found between high specificity = TN/(TN + FP),
which is achieved with high confidence thresholds, and high
sensitivity TP/(TP + FN), which is achieved with low confi-
dence thresholds. We hoped to find a choice of confidence
threshold at which true positives and true negatives (blues in
the figure) predominate. Acceptable compromises are seen to

exist for all species except perhaps jackfruit, presumably due
to the small number of examples in the training data as noted
above. For simplicity, the confidence threshold was set at 0.5
for all species when generating the heatmaps that follow.

Application of trained CNN

In this subsection, we present heatmaps that illustrate patterns
of homegardening practices measured by our survey spanning
a large portion of northern Thailand. Our technique of fine-
grained observations carried out over a large geographic re-
gion reveals patterns that might not emerge from studies of
small numbers of gardens. The heatmap in Fig. 5 shows with
color the local average of the number of target species detect-
ed in each image, a metric that for brevity we will refer to
henceforth as the intra-garden variety, over almost the whole
5-province study area. For this regional picture, we perform
local spatial averaging with a KDE bandwidth of 2.5 km. It is
seen that the large city of Chiang Mai and its surroundings
constitutes a region tens of kilometers across where the intra-
garden variety is low (less than around one species in each
image) compared with the more rural provinces to the east,
where the intra-garden variety typically ranges between 1.5
and 2 species in each image.

A similar effect, though less extreme and much less exten-
sive, is seen at the other four provincial capitals, which are
indicated by arrows in the figure. Another prominent feature
of this heatmap is the relatively low intra-garden variety over
almost the entire western edge of our study area: this is ad-
dressed in the Discussion section.

Each of these features suggests phenomena that could be
examined further using either this method or traditional ap-
proaches to homegarden study. The histogram inset at the
lower right of Fig. 5 shows the frequency distribution of the
intra-garden variety in this map. Coarsely, it is unimodal with
some excesses near rational numbers that arise from cells
where only a small number of images contribute significantly
to the local weighted average. Only a small fraction of cells
have a local average higher than two detected species in each
image with this 2.5 km-bandwidth smoothing, but higher av-
erages occur at finer spatial scales as seen in Fig. 6.

Figure 6 is a higher-resolution heatmap - with 500 m KDE
bandwidth - of the intra-garden variety, covering a region
indicated by the smaller of the two boxes at the upper right
of Fig. 5. It reveals finer kilometer-scale structure that is

Table 1 Numbers of training instances and mean average precision (mAP) by species

Banana Coconut Dracaena Gooseberry Jackfruit Mango Papaya Overall

Number of Instances in the Training Set 1814 3368 745 453 221 957 750 8308 (total)

Average Precision by Species on the Test Set 0.56 0.71 0.45 0.78 0.23 0.54 0.61 0.553 (mAP)
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largely smoothed out in the multi-province picture of Fig. 5. In
Fig. 6, we see that neighboring villages have quite different
intra-garden variety, with examples at 1.25, 1.75 and almost

2.5 species in each image on average. Also, visually promi-
nent is a development of some kind in the center of the picture
where, along two long straight parallel roads, intra-garden

Fig. 4 Treating the network as a
classifier of the images as positive
or negative for the presence of
each species, these plots show the
numbers of images (vertical axis)
in the test set that are true
positives (TP), true negatives
(TN), false positives (FP), and
false negatives (FN) for each of
the seven species, as a function of
network confidence threshold
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variety is very low: at or below about 0.5 species in each
image on average.

In Fig. 7, we show the prevalence of individual species,
at the same 500 m kernel bandwidth used in Fig. 6, over
the region marked by the larger of the two rectangles at the
upper right of Fig. 5. In each panel of Fig. 7, the color
denotes the local average fraction of images in which the
particular species was detected. It is immediately apparent
that coconut and banana were the most frequently detected
species. Both show substantial heterogeneity, with low fre-
quency in the core of the town of Chiang Kham (close to
the center of each images in Fig. 7). Coconut attains its
highest prevalence immediately outside the town, while
banana appears to be most prevalent in the parts most re-
mote from the town. The prevalence of dracaena persists
right into the core of Chiang Kham while that of star
gooseberry does not. Likewise mango, which is the most
homogeneously distributed of these six species, remains
common in the core of the town, while papaya is markedly
rarer there than in the surrounding villages.

Discussion

As we have just described, our survey reveals significant var-
iations in horticultural activity at both examined spatial scales.
The blue area on the left of Fig. 5, indicating lower numbers of
species in each image along the western edge of the study
area, is among the most striking features of that figure. Since
this area is roughly the edge of the portion of Thailand settled
by Karen people originally from Burma (Delang 2003), our
guess is that we are detecting ethnic differences in horticultur-
al practice (Srithi et al. 2012). But the literature offers many
other variables that can drive or influence homegarden plant
selection and intra-garden variety: garden owner income and
other socioeconomic factors (Gajaseni and Gajaseni 1999;
Galluzzi et al. 2010; Pandey et al. 2007; Wezel and Bender
2003), proximity to a central city (Huai et al. 2011), climate
characteristics (Huai et al. 2011), the utility of a specific crop
(Gajaseni and Gajaseni 1999), topography, soil properties,
and so on. A comparison of medicinal plant usage among
Thai ethnic groups found that there was more similarity in

Fig. 5 Heatmap of “intra-garden
variety” (locally averaged number
of target species detected in each
image) with KDE bandwidth
2.5 km. Almost the entire 5-
province study-area is shown.
Black dots mark the sampled
panorama locations: approxi-
mately 3000 per district
(amphoe), totaling about 150,000.
The opacity of the overlay is a
Gaussian function of distance to
the nearest panorama with stan-
dard deviation also 2.5 km. The
two white rectangles at the upper
right mark the regions shown in
Figs. 6 and 7. The inset in the
lower right corner is a histogram
of cell intra-garden variety.
Background map tiles copyright
Stamen Design (CCby3.0)
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medicinal plant species usage among villages within same
region than there was similarity in medicinal plant species
usage within a given ethnic group (Phumthum and Balslev
2019). Further, Phumthum and Balslev call for ethnobotanical
research that is regional because studies of individual villages
may, it finds, miss these larger trends. Indeed, the high village-
to-village variation observed here backs this up, illustrating a
potential hazard of drawing broad conclusions from solely the
kind of small-scale sampling used in traditional studies. The
data we generate can clearly support studies of regional scale.
We do not attempt here to determine the meaning of the pat-
terns of homegardening we have detected - we are not well

qualified to do so - but we believe our approach offers a new
way of obtaining information for the investigation of those
connections that is complementary to traditional approaches
employing small samples examined intensively. Our tech-
nique also has some limitations and challenges, which we
now enumerate.

The intra-garden variety here is strictly with respect to the
species we have trained our CNN to recognize: if gardeners in
a district prefer a species that is not on our list over one on the
list (Dimocarpus longan over mango, for example), all other
things being equal, that would register here as a lower local
average number of species in each image. Such a preference

Fig. 6 A heatmap of intra-garden
variety (locally averaged number
of target species detected in each
image) at higher resolution than in
Fig. 5, using a KDE bandwidth of
500 m. High village-to-village
variation is evident. The region
shown here is indicated by the
smaller box drawn at the upper
right of Fig. 5. Each black dot
marks a sampled panorama loca-
tion. The color scale is the same as
in Fig. 5. Background map tiles
copyright Stamen Design
(CCby3.0)
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could in fact be responsible for the “blue”western edge of Fig.
5. At any stage of its development, our tool will only have the
ability to identify plants in a prescribed set of species. Surveys
conducted with it are thus quite different from traditional ones
described in the literature (such as Lattirasuvan et al. (2010))
that attempt to generate an exhaustive inventory of species
grown in a small sample of gardens: ours is in a sense the
opposite - spatially exhaustive for a restricted set of species.

There can be intrinsic difficulties in distinguishing and
identifying plant species visually from macroscopic images,
even of high resolution. While some species, such as papaya,
are highly distinctive and hard to confuse with anything else,
others belong to groups of visually similar species (lemon-
grass among other grasses, for example) that are less easily
distinguishable both to the human eye and to a CNN. It is for
this reason that we have not included results on galangal or the

Fig. 7 For six species, heatmaps of their local prevalence - the local
average fraction of images in which the species is detected - in the vicinity
(larger white rectangle at upper right in Fig. 5) of the town of Chiang
Kham (white arrow in banana panel), Phayao province. A Gaussian KDE

with bandwidth 500 m was used. Although all degrees of prevalence
between 50% and 100% are colored yellow, few cells have a banana
prevalence above 50%, and few have a coconut prevalence above 60%.
Background map tiles copyright Stamen Design (CCby3.0)

Earth Sci Inform



group of shrubs containing cha-om in this paper; with the
amount of training data we have prepared so far, our false-
positive rates were too high. For these species in particular, we
judge that good results can be achieved if the quantity of
training data can be doubled or quadrupled. But for other
species, achieving reliable automated detection from GSV-
like images may be impossible or require a prohibitive amount
of labor to compile adequate training data. Vegetables, in par-
ticular, small and low to the ground, may pose a great
challenge.

We note that while our measured variations in individual
species prevalence are meaningful, the absolute prevalences
of different species should be compared only with caution and
after careful calibration, because the detectability radius can
vary considerably among species. Coconut palms, in particu-
lar, because they are tall, are detected evenwhen behind build-
ings, walls, and trees that would obscure instances of most
other species on our list. There is a potential for some
double-counting of instances of species like coconut by seeing
them both at a distance and close up in different images. This
can be limited by rejecting detected instances whose bounding
box is smaller than a suitably chosen threshold size.

There are also limitations that result from using Google
Street View imagery in particular. Firstly, we do not have
any control over its collection. Spatially, we have imagery
only from where the GSV cars have traveled, though fortu-
nately in Thailand this does include a very large fraction of all
roads, even down to unpaved single-lane tracks. Secondly,
even where we do have imagery, we can see only plants with
an unobstructed line of sight from the street. The GSV camera
is quite high off the ground - about 2.5 m - allowing us to see
over most fences and garden walls.. Temporally, most loca-
tions have imagery only from a single date, so the opportuni-
ties for exact simultaneous comparisons and for longitudinal
studies are limited.

Finally, in the present work, we have relied on the HRSL
classification of locations as settled or not settled to restrict our
attention to images of homesteads. The HRSL classification is
not perfect. We have observed, for example, that an HRSL
cell containing an isolated (uninhabited) shelter in an agricul-
tural crop field is typically falsely labeled as settled. To pre-
vent such misidentifications from distorting the heatmaps pre-
sented here, we omitted isolated panoramas that did not have
at least two other panoramas within a radius of two KDE
bandwidths. It is possible that a second CNN, trained to rec-
ognize homesteads, could be used to filter out non-homestead
imagery more accurately.

Conclusions

We believe our results show that GSV imagery combined
wi th ob j ec t de t e c t i on by a CNN prov ide s an

unprecedented opportunity for large-scale, densely sam-
pled, high-resolution surveys of some aspects of
homegardening practices. We have demonstrated that the
tool we have developed can already reliably detect six
species of plants common in homegardens in Thailand
(mango, papaya, banana, coconut, gooseberry, dracaena).
It is also near the point of doing well on three other spe-
cies (jackfruit, cha-om, galangal), and has the potential to
be extended to others.

While the per-species labor required to tag the images
used to train the detection network is not trivial, once that
work is done, enormous plant surveys can then be con-
structed with minimal additional human labor. Even for
purposes where the automated discrimination is too
coarse, this approach could serve as a useful initial step
in a survey with human horticultural experts then refining
the labeling, such as by plant variety or cultivar. There are
some constraints under which our tool must operate, but
we anticipate that it can be deployed by researchers and
policymakers to usefully augment available data about
homegardening across large regions.
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