

Allocating with Priorities and Quotas: Algorithms, Complexity, and Dynamics

Sid Banerjee

Matt Eichhorn

David Kempe

Presented at EC 2023

Banerjee, Eichhorn, Kempe

4

Allocating with Priorities and Quotas

July 10, 2023 1 / 17

A Motivating Example: Pandemic Response

Supply-chain constraints place limits on available resources

• Ventilators, Vaccines, Antiviral treatments

Many considerations for who to prioritize

- Healthcare / essential workers
- Individuals with comorbidities
- Residents of high-density housing

What is a *fair* way to allocate care?

Commonly used (1D) priority schemes have issues

The Priority-Respecting Allocation Problem

Agents : \mathcal{A} ,	, <i>unit demand</i> for resource <i>indifferent</i> about categories	lpha (2)	eta (1)	γ (1)
Categories : C ,	allocate to agents	а	b	b
Quotas : q _c	$\in \mathbb{N}$, $q = \sum q_c$	Ь	с,е	а
Eligibility : \mathcal{E}_c	${}^{c\in \mathcal{C}}\subseteq \mathcal{A}$	с	d	
Priorities : To	tal pre-order \succ_c over \mathcal{E}_c	d		
Ra	anks agents in <i>priority tiers</i>	е		
a	$\succeq_c a' \implies c$ prioritizes a over a'			

Pathak, Sönmez, Ünver, and Yenmez. Fair allocation of vaccines, ventilators and antiviral treatments: leaving no ethical value behind in health care rationing. EC 2021.

Delacrétaz. Processing reserves simultaneously. EC 2021.

Aziz and Brandl. Efficient, fair, and incentive-compatible healthcare rationing. EC 2021.

Feasible Allocations

Goal: Select an *allocation map* $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\bot\}$

What properties should φ have?

Feasible Allocations

Goal: Select an *allocation map* $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\bot\}$

What properties should φ have?

Quota Respecting [QR]: Categories allocate at most their quotas

$$|arphi^{-1}(c)| \leq q_c$$

Eligibility Respecting [ER]: Categories allocate only to eligible agents

$$\varphi^{-1}(c) \subseteq \mathcal{E}_c$$

Feasible Allocations

Goal: Select an *allocation map* $\varphi : \mathcal{A} \to \mathcal{C} \cup \{\bot\}$

What properties should φ have?

Quota Respecting QR: Categories allocate at most their quotas

$$|arphi^{-1}(c)| \leq q_c$$

Eligibility Respecting [ER]: Categories allocate only to eligible agents

$$\varphi^{-1}(c) \subseteq \mathcal{E}_c$$

Priority Respecting [PR]: A category allocates to an agent only if all higher-priority agents have been allocated

$$\varphi(\mathbf{a}') = \mathbf{c} \ \land \ \mathbf{a} \succeq_{\mathbf{c}} \mathbf{a}' \implies \varphi(\mathbf{a}) \neq \perp$$

Visualizing an Allocation

Visualizing an Allocation

Locating Valid Allocations

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR] allocates to a strict superset of agents

$$\neg \exists \psi : \psi^{-1}(\bot) \subsetneq \varphi^{-1}(\bot)$$

How can we find valid ([QR],[ER],[PR],[PE]) allocations?

Locating Valid Allocations

Pareto Efficient [PE]: No alternate allocation satisfying [ER], [QR], [PR] allocates to a strict superset of agents

$$\neg \exists \psi : \psi^{-1}(\bot) \subsetneq \varphi^{-1}(\bot)$$

How can we find valid ([QR],[ER],[PR],[PE]) allocations?

Our Work in Three Acts:

- I Efficient algorithm based on LP characterization
- Problem extensions and complexity results
- Online allocation with priorities and quotas

Toward an Efficient Algorithm

Decision variables:
$$x = \{x_{a,c}\}_{a \in \mathcal{A}, c \in \mathcal{C}}$$
. $x_{a,c} = \mathbb{I}(\varphi(a) = c)$,

(P_0)				
max	$\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} x_{a,c}$		[PE]	
s.t.	$\sum_{a \in \mathcal{A}} x_{a,c} \leq q_c$	$orall oldsymbol{c} \in \mathcal{C}$	[QR]	
	$\sum_{\boldsymbol{c}\in\mathcal{C}} x_{\boldsymbol{a},\boldsymbol{c}} \leq 1$	$orall m{a} \in \mathcal{A}$	[UD]	
	$x_{a,c} = 0$ $x_{a,c} \in \{0,1\}$	$orall \mathbf{a}, \mathbf{c} : \mathbf{a} ot\in \mathcal{E}_{\mathbf{c}}$ $orall \mathbf{a} \in \mathcal{A}, \mathbf{c} \in \mathcal{C}$	[ER]	

 (P_0) encodes a bipartite *b*-matching problem

LP-relaxation is totally unimodular \implies integer corner points

Allocating with Priorities and Quotas

(P_0) Doesn't Account for Priorities

(P_0) Doesn't Account for Priorities

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Valid δ should satisfy:

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Valid δ should satisfy:

Consistent: Prioritized agents have lower cost $a \succeq_c a' \iff \delta_{a,c} \leq \delta_{a',c}$

Adding Priorities

Idea: Tilt the objective so remaining optima respect priorities

Valid δ should satisfy:

Consistent: Prioritized agents have lower cost $a \succeq_c a' \iff \delta_{a,c} \leq \delta_{a',c}$ Small Effect: Costs don't disincentivize allocation $\sum_{a \in \mathcal{A}} \sum_{c \in \mathcal{C}} \delta_{a,c} \leq \frac{1}{2}$

LP Characterization of Valid Allocations

Theorem

Let x^* be a solution of (P_{δ}) for any valid δ . Then, x^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

LP Characterization of Valid Allocations

Theorem

Let x^* be a solution of (P_{δ}) for any valid δ . Then, x^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Converse Result:

- Valid allocations are corner points on optimal face of (P_0)
- $\bullet\,$ Requiring valid $\delta\,$ restricts angles we can tilt the objective
- Can the allowed angles find all valid allocations?

LP Characterization of Valid Allocations

Theorem

Let x^* be a solution of (P_{δ}) for any valid δ . Then, x^* corresponds to an allocation satisfying [ER], [QR], [PR], [PE].

Converse Result:

- Valid allocations are corner points on optimal face of (P_0)
- $\bullet\,$ Requiring valid $\delta\,$ restricts angles we can tilt the objective
- Can the allowed angles find all valid allocations?

Theorem (Informal)

We can locate any set of agents who receive units in a valid allocation by solving (P_{δ}) for some valid δ .

- Weighted matching framework is a standard setting
- The restrictions on δ are minimal

How far can we extend our techniques to handle related problems?

- Weighted matching framework is a standard setting
- The restrictions on δ are minimal

How far can we extend our techniques to handle related problems?

Case Studies: Demonstrate "computational knife's edge"

- One extension is easy: small modification to our algorithm
- Related extension is NP-Hard

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* valid allocation.

Decide if agent *a* is serviceable.

Must agent a be allocated?

A *unanimous* agent is a recipient in *every* valid allocation.

Decide if agent *a* is unanimous.

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* valid allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* valid allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C.

Must agent *a* be allocated?

Remove *a* and all lower-ranked agents from instance.

_	lpha (2)	eta (1)	γ (1)
-	w	x	x
	x	a , z	w
	а	у	
	y		

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* valid allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

lpha (2)	eta (1)	γ (1)
W	x	x
x	Ζ	w

Can agent a be allocated?

A *serviceable* agent is a recipient in *some* valid allocation.

Deciding whether an agent *a* is serviceable is NP-Hard.

Proof Idea: Reduction from X3C.

Must agent a be allocated?

Remove *a* and all lower-ranked agents from instance.

2. Incorporating Agent Utility

Agent *a* has a utility function $u_a : C \to (0, 1]$ encoding preference for certain categories. $(u_a(\bot) = 0.)$

Utility Pareto-Efficient Allocation

Select allocation that disincentivizes agents from trying to swap units

Utility Maximizing Allocation

Select allocation that maximizes the sum of agent utilities

2. Incorporating Agent Utility

Agent *a* has a utility function $u_a : C \to (0, 1]$ encoding preference for certain categories. $(u_a(\bot) = 0.)$

Utility Pareto-Efficient Allocation

Run our algorithm twice

First run uses arbitrary δ to determine recipient set.

Second run removes unallocated agents and sets δ according to agent utilities.

Utility Maximizing Allocation

NP-Hard via a reduction from serviceable problem.

Proof Idea: One agent has high utility in all categories, others have low utility.

*Hardness reduction can be generalized to other optimization objectives (e.g. Nash Social Welfare)

Online Priority-Respecting Allocation

Setup:

- Instead of agent set \mathcal{A} , there is a finite set of agent types Θ
- Categories specify eligibility and priorities over types
- T arriving agents
- Agents' types θ_t drawn i.i.d. from *known* distribution $(p_{\theta})_{\theta \in \Theta}$

Online Priority-Respecting Allocation

Setup:

- Instead of agent set $\mathcal A,$ there is a finite set of agent types Θ
- Categories specify eligibility and priorities over types
- T arriving agents
- Agents' types θ_t drawn i.i.d. from known distribution $(p_{\theta})_{\theta \in \Theta}$

Theorem

If we insist on no priority violations, there are instances that incur $\Omega(T)$ loss in efficiency with high probability.

A Multi-Objective Approach

Rather than enforcing a [PR] constraint, we'll treat minimizing priority violations as a second objective

A Multi-Objective Approach

Rather than enforcing a [PR] constraint, we'll treat minimizing priority violations as a second objective

Theorem

Given any online priority-respecting allocation instance, there is an algorithm that ensures that

 $\mathbb{E}\big[\text{efficiency loss} + \# \text{ priority violations}\big] \leq \frac{|\Theta|^5 (|\mathcal{C}|+1)^4}{p_{\min}^4}.$

- Constant with respect to the instance size (T and q)
- Depends only on instance "complexity"
- The algorithm fundamentally relies on our LP characterization

- In economics and CS, we typically model fairness as an objective function to optimize
- Categories provide an instrument to encode "competing" objectives in a transparent way
- Can locate good allocations via a weighted matching LP
 - More efficient than existing approaches
 - Provides flexibility for many problem extensions
- Perturbation technique seems useful in other related problems

Thank You!

