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Abstract

In many applications such as rationing medical care and supplies, university admissions, and the assign-
ment of public housing, the decision of who receives an allocation can be justified by various normative
criteria (ethical, financial, legal, etc.). Such settings have motivated the following priority-respecting
allocation problem: several categories, each with a quota of interchangeable items, wish to allocate the
items among a set of agents. Each category has a list of eligible agents and a priority ordering over these
agents; agents may be eligible in multiple categories. The goal is to select a valid allocation: one that
respects quotas, eligibility, and priorities and ensures Pareto efficiency.

We provide a complete algorithmic characterization of all valid allocations, exhibiting a bijection between
sets of agents who can be allocated and maximum-weight matchings under carefully chosen rank-based
weights. While prior work provides a polynomial-time algorithm to locate a valid allocation, our charac-
terization admits a simpler algorithm that enables two wide-reaching extensions:

1. Selecting valid allocations that satisfy additional criteria: Via three examples — inclusion/exclusion of
some chosen agent; agent-side Pareto efficiency vs. welfare maximization; and fairness from the perspec-
tive of allocated vs. unallocated agents — we show that finding priority-respecting allocations subject to
some secondary constraint straddles a complexity knife-edge; in each example, one problem variant can
be solved efficiently, while a closely related variant is NP-hard.

2. Efficiency-envy tradeoffs in dynamic allocation: In settings where allocations must be made to T
agents arriving sequentially via some stochastic process, we show that while insisting on zero priority
violations leads to an Ω(T ) loss in efficiency, one can design allocation policies ensuring that the sum of
the efficiency loss and priority violations in hindsight is O(1) (under mild regularity conditions on the
arrival process).

1 Introduction

A core socio-economic question is how to ration scarce resources without money. While not new, this question
has been forcefully reintroduced into public consciousness by COVID-19 [White and Lo, 2020, Andrews et al.,
2021, Emanuel et al., 2020, Binkley and Kemp, 2020, Pathak et al., 2021]. Defining “good” allocations is
far from straightforward, as legal, financial, and ethical considerations can lead to nuanced, often clashing,
requirements. For example, consider the following:

Academic Fellowships: Donors often define qualification requirements for named scholarships to promote
students with certain demographics/backgrounds/skills.

Medical Care: The COVAX program set standards for the equitable distribution of vaccines in developing
countries, prioritizing vaccination of groups such as healthcare workers, the elderly, and individuals with
comorbidities [COVAX].

Primary School Enrollment : In Boston, half of a school’s seats are reserved for students in the neighborhood,
and priority is given to siblings [Abdulkadiroğlu et al., 2005]. Chicago requires that schools allocate roughly
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25% of seats to each of four socio-economic tiers [Benabbou et al., 2019]. Chile’s School Inclusion Law
defines which factors can/cannot be used to prioritize students, and has quotas for students with economic
hardships [Correa et al., 2021].

Public Housing : Singapore’s 1989 Ethnic Integration Policy places quotas on the number of public housing
units that may be allocated to each of three major ethnic groups [Benabbou et al., 2018].

The above settings broadly share the following features: a resource (scholarships, vaccines, school seats,
housing) must be rationed among agents, whose number typically exceeds the available resource budget. The
budget is split into several categories, each of which has a quota the category is responsible for distributing
— this is sometimes due to physical constraints (different schools/housing projects), and at other times to
implement some social norm (fellowship funds reserved for local/international/under-represented students;
vaccine quotas for countries/states/target populations). Each category has rules to determine which agents
are eligible for allocation. Each agent wants up to a single unit of the resource, but is indifferent as to which
category allocates that unit1. Agents may be eligible in multiple categories, so categories must coordinate
to maximize allocations. Finally, categories often define rankings (or priorities) over eligible agents, which
are intended to help choose (and justify) which eligible agents get allocated. These rankings are often
idiosyncratic, so there may be no natural way to compare agents across categories.

To understand how the above features (quotas, eligibility, priorities) restrict allocations, we build on the
framework introduced by Pathak et al. [2021], which has led to a line of work aiming to understand its
properties Delacrétaz [2021], Aziz and Brandl [2021], Biró and Gudmundsson [2021]. We briefly summarize
the framework below; see Section 2 for a formal model.

The Priority-Respecting Allocation Problem
— q resource units, split into quotas qc for categories c ∈ C, must be rationed to agents A.
— Each category c has a set Ec ⊆ A of eligible agents, and a priority order ⪰c over Ec.
— Agent a is allocated xa,c from each category c, with

∑
c∈C xa,c ≤ 1. (unit demand)

— Category c can allocate only to agents in Ec. (eligibility-respecting)
— Category c can allocate up to its quota, i.e.,

∑
a∈A xa,c ≤ qc. (quota-respecting)

— Category c can allocate to agent a only once all higher priority agents are allocated
i.e., xac > 0 =⇒

∑
c′∈C xa′,c′ = 1 for all agents a′ ≻c a. (priority-respecting)

The above problem tries to formalize what policymakers desire when using quotas, eligibility rules, and
priorities, by providing a test for determining whether an allocation “respects” these requirements or not.
The first two conditions impose that a category should only allocate from its quota, and only to eligible agents
— these are standard and easily implemented. The third condition interprets priorities as a requirement that
a category never allocate to an agent if a higher-priority agent has not been satisfied. This requirement is
trickier to implement (and verify) since the higher-priority agents may receive allocations from any category.
Nevertheless, the axioms are easy to satisfy — for example, each category can sequentially pick the highest-
priority unallocated agent(s) in its eligibility list (more generally, via serial dictatorship; see Section 3.2).

One issue with the above requirements, however, is that they do not consider the “efficiency” of an allocation.
For example, allocating to no one satisfies all the requirements. More problematic are settings with partial
eligibility, where even if each category allocates maximally (i.e., until it exhausts its quota or eligibility list),
the allocation may still end up wasting resources (for example, see Fig. 1). A natural additional requirement,
therefore, is for allocations to be Pareto efficient —whereby there is no way for agents to exchange allocations
such that at least one agent ends up gaining while no one is worse off. Ensuring Pareto efficiency in addition
to the above requirements, however, seems challenging, and prior work [Pathak et al., 2021, Delacrétaz, 2021,
Abdulkadiroğlu and Grigoryan, 2021] states this as an open question. More recently, Aziz and Brandl [2021]
provide a scheme for finding a particular maximum-size (and hence Pareto efficient) allocation by solving
|A| bipartite matching problems — this result, however, does not give any insight into general Pareto
efficient valid allocations, and/or how one can select from among such allocations to satisfy some secondary

1This may not hold in all settings — for example, families do have preferences between schools and housing units. We return
to this issue in Section 4.2. Nevertheless, it is true up to first order that agents prefer being allocated to staying unallocated.
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objective. Figs. 1 and 2 give some intuition into the challenge of finding priority-respecting allocation —
in particular, Fig. 2 shows that unlike maximum matchings, the set of priority-respecting allocations is not
necessarily convex.

1.1 Our Contributions

Our work aims to characterize the set of valid allocations: those which respect eligibility, quotas, and
priorities, and are Pareto efficient (see Section 2). Our main result is paraphrased as follows:

A set of agents can be allocated via a valid allocation if (Theorem 1) and only if (Theorem 2) they
are allocated under the maximum matching for a weighted matching instance with edge weights
picked from a certain valid set.

The set of valid weights (Definition 2) is based on perturbing2 the unweighted matching objective such that
the perturbations are consistent with the priorities, and the total perturbation is small (at most 1/2). As
an immediate consequence, we get that every valid allocation allocates the same number of units, which
moreover equals the size of an optimal matching without priority requirements. We also show that although
the set of valid allocations is non-convex, every fractional valid allocation is realized as a convex combination
of integral valid allocations (Proposition 2).

More importantly, our transformation of the problem of locating valid allocations into cardinal welfare
maximization enables two wide-reaching and practical extensions. First, in Section 4, we consider how to
select valid allocations satisfying additional criteria through three case studies:

1. Valid allocations with agent inclusion/exclusion: In Section 4.1, given an agent a ∈ A, we ask if
one can find a valid allocation x that excludes a (i.e.,

∑
c∈C xa,c = 0), or includes a (i.e.,

∑
c∈C xa,c > 0).

We show that while the former problem can be efficiently solved, the latter is NP-hard (Proposition 4).
These results give a glimpse into the strange algorithmic landscape of valid allocations; note that both
of these problems can be efficiently handled for maximum matchings and stable matchings (via the LP
characterization of Vande Vate [1989]).

2. Incorporating agent preferences: In Section 4.2, we augment the basic priority-respecting allo-
cation problem by incorporating agent preferences for categories. We show how to efficiently find
allocations that respect eligibility, quotas and priorities, and are also Pareto efficient under the agents’
preference orders (Theorem 3). On the other hand, we show that the problem of selecting a valid allo-
cation that maximizes practically any aggregate function of agents’ utilities is NP-hard (Theorem 4).

3. Inner/outer allocation thresholds: In Section 4.3, we consider the problem of selecting valid
allocations that optimize some score based on the inner allocation threshold (the lowest-priority agent
allocated in each category) or, alternately, the outer allocation threshold (the highest-priority agent
in each category who remains unallocated). Understanding these thresholds is important for auditing
the “fairness” of an allocation. We show that optimizing over inner thresholds can be done efficiently
(Propositions 5 and 6), while optimizing over outer thresholds is NP-hard (Propositions 7 and 8).

Each of these cases demonstrates that selecting valid allocations straddles the line of computational effi-
ciency; one possible variant of each case study admits an efficient algorithm (based on our main approach
in Section 3), while a closely related variant is computationally hard.

Online Priority-Respecting Allocations with Dynamic Arrivals: Finally, we consider an online
variant of the priority-respecting allocation problem. Ours appears to be the first work that develops algo-
rithms and performance guarantees for online settings, even though several of the original motivations for
the priority-respecting allocation model were intrinsically tied to online allocation (of vaccines/medical sup-
plies) Pathak et al. [2021]. In the setting we consider, agents belong to one of a small number of observable
types. Agents arrive one at a time over T rounds via some (known) underlying stochastic process, and the

2Importantly, the perturbations can be local (i.e., the edge weight between agent a and category c only depends on a’s
position in c’s priority order); this is surprising, as we show that no such result is possible for the set of stable matchings. We
present a discussion that connects the stable matching and priority respecting allocation problems as special cases of Scarf’s
Lemma in Appendix A.
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principal, after observing each agent’s type, must immediately and irrevocably decide to either allocate this
agent a unit from some category or leave the agent unallocated. We demonstrate that completely forbidding
priority violations leads to Ω(T ) regret with all but exponentially small probability. However, by incorpo-
rating priority violations into the objective, our LP formulation of the problem enables the development of
a Bayes selector online algorithm for which the sum of the expected efficiency loss and priority violations in
hindsight is O(1) (i.e., independent of the number of arriving agents and the resource budgets, but depending
polynomially on the number of types and categories).

1.2 Related Work

As mentioned, we build on the framework of Pathak et al. [2021], which has inspired several follow-up papers.
Delacrétaz [2021] notes that since the axioms do not uniquely identify an allocation, different choices can
induce biases; to allay this, he introduces a waterfilling-style simultaneous allocation procedure that leads
to a unique (fractional) outcome. On the other hand, Aziz and Brandl [2021] introduce a procedure that
results in a maximum-size allocation. Aziz and Sun [2021] describe how to incorporate diversity goals as an
optimization objective in these settings. Finally, Abdulkadiroğlu and Grigoryan [2021] consider lower bounds
on categories, and develop a choice rule that minimizes the number of priority violations in this setting.

A closely related problem to reserve allocation is fair division, where agents have preferences over (non-
identical) items, and we seek a Pareto efficient division. The key distinction between these problems is
that in fair division, agents’ preferences determine the stability of an allocation, while in our setting, the
justification for an allocation is dictated by category preferences, while its utility may depend on agent
preferences. Nevertheless, the structures of desired allocations in both turn out to be quite similar. Our
results provide some intuition as to why this is the case, as when viewed as an ordinal welfare maximization
problem, it is clear that the two sides of the market are symmetric. Consequently, our techniques and results
share commonalities with this literature. For example, our case study in Section 4.1 recovers results of Saban
and Sethuraman [2015] on computing match probabilities under random serial dictatorship. On the other
hand, our perturbation approach is foreshadowed by Biró and Gudmundsson [2021]’s, who propose using
(pseudo)welfare maximization for computing Pareto efficient fair division solutions.

Finally, settings with two-sided preferences have a long history, stemming from Gale and Shapley’s seminal
work on the deferred acceptance (DA) algorithm [Gale and Shapley, 1962]. While a fairly robust algorithm,
DA can fail to compute a Pareto efficient allocation in the case of indifferences, as pointed out by Erdil
and Ergin [2017]. They describe an iterative procedure to Pareto improve an allocation while preserving
its stability, illustrating that notions of stability and efficiency can be simultaneously realized. The flow-
augmentation ideas in their improvement procedure share commonalities with our arguments in Section 3.

2 Model

Resources, Categories, Quotas and Agents: A set A of agents compete for q units of a resource. The
units are distributed to a set C of categories, through which they are allocated. Each category c ∈ C is given
an integer quota of qc units to allocate, such that q =

∑
c qc.

Each agent is unit-demand, i.e., can consume at most one unit of the resource. For the initial part, we
assume that agents are indifferent as to which category provides their allocation; in Section 4.2, we discuss
how to incorporate agent utilities in this setting.

Eligibility and Priorities: Each category partitions A into a set of eligible and ineligible agents. The
eligible agents are further partitioned into priority tiers.

Formally, each category c ∈ C has an associated eligible set of agents Ec ⊆ A, and a total preorder ⪰c

over Ec. Given any two agents a, a′ ∈ A, a ⪰c a′ denotes that a has weakly higher priority than a′ in c.
We write a ≻c a′ when a ⪰c a′ and a′ ̸⪰c a, so a has (strictly) higher priority in c. Given any agent a
and any category c, we define the rank of a in c, denoted by rc(a), to be the length ℓ of the longest chain
a1 ≻c a2 ≻c · · · ≻c aℓ = a with each ai ∈ A. Note that 1 ≤ rc(a) ≤ |A|. We visualize instances using charts
in the style of Fig. 1.
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Allocation 1

α (1) β (1) γ (1)

c a b , c

b a , d

Allocation 2

α (1) β (1) γ (1)

c a b , c
b a , d

Allocation 3

α (1) β (1) γ (1)

c a b , c
b a , d

Allocation 4

α (1) β (1) γ (1)

c a b , c

b a , d

Figure 1: Four (integer) allocations in an instance with C = {α, β, γ} with quotas (1, 1, 1), and A = {a, b, c, d}. Each
category c lists its eligible agents Ec, where the agents listed in the i’th row have rank rc(·) = i.
— Allocation 1 violates [PR]: d is allocated in category γ, but b, who has higher priority, remains unallocated.
— Allocation 2 violates [PE], as it is Pareto dominated by Allocation 3; note, however, that it is non-wasteful.
— Allocations 3 and 4 are both valid (Definition 1) and allocate to the same set of agents.
— Allocation 4 violates [CS] (Section 3.2), as β and γ can swap to allocate to higher-priority agents.

Desiderata for Valid Allocations: Our goal is to find allocations that respect eligibility, quotas, and
priorities. Formally, a (fractional) allocation is a function x : A × C → [0, 1], with

∑
c xa,c ≤ 1 for each

a ∈ A (since agents are unit-demand). If all xa,c ∈ {0, 1} (i.e., the matching is integral), then x coincides
with an allocation map φ : A → C ∪ {⊥} assigning each agent to either a category (through which they are
allocated) or the outside option ⊥ (if they remain unallocated).

Moreover, the allocation must satisfy the three desiderata given below. These were proposed for integral
allocations by Pathak et al. [2021]; we state the generalization for fractional matchings due to Delacrétaz
[2021] since they naturally specialize to the integral case.

[QR] Quota Respecting: No category allocates more units than its quota.∑
a∈A

xa,c ≤ qc for all c ∈ C.

[ER] Eligibility Respecting: Agents are allocated only through eligible categories.

xa,c = 0 for all c ∈ C, a /∈ Ec.

[PR] Priority Respecting: An agent receives any allocation through category c only after all
higher-priority agents in c are fully allocated.

xa′,c > 0 ∧ a ≻c a
′ =⇒

∑
c′∈C

xa,c′ = 1 for all a, a′ ∈ A, c ∈ C.

While the above desiderata determine which allocations are invalid due to violating the prescribed properties,
they still admit many allocations that are undesirable. In particular, setting all xa,c = 0 satisfies the preceding
desiderata. A natural additional property is that any chosen allocation be Pareto efficient, which we formalize
as follows.

[PE] Pareto Efficient: An allocation x satisfying [QR], [ER], and [PR] is Pareto efficient if there
is no other allocation y satisfying these desiderata in which one agent gets a strictly greater
allocation and no one receives a smaller allocation. Formally, for every y satisfying [QR],[ER],
and [PR],

there is an a ∈ A :
∑
c∈C

ya,c >
∑
c∈C

xa,c =⇒ there is an a′ ∈ A :
∑
c∈C

ya′,c <
∑
c∈C

xa′,c.

As a special case of this definition, an integral allocation is Pareto efficient if and only if there is no feasible
way to allocate to a strict superset of agents. Although quite natural, Pareto efficiency has not been
directly addressed in previous work. Pathak et al. [2021] and Delacrétaz [2021] consider a weaker non-
wastefulness property that stipulates that in any category with unallocated quota, all eligible agents must be
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fully allocated. It is easy to construct settings that admit non-wasteful but Pareto inefficient allocations; for
example, see the Allocation 2 in Fig. 1. Aziz and Brandl [2021] strengthen non-wastefulness to a maximality
property: any selected valid allocation must maximize the total number of allocated units. While maximality
clearly implies Pareto efficiency, we show in Proposition 1 that the two properties are in fact equivalent in
this setting. We find Pareto efficiency to be more natural, both in this desideratum and when extending to
settings with agent preferences. Together, our four desiderata provide a notion of a valid allocation:

Definition 1 (Valid Allocation). An allocation is valid if it satisfies [QR], [ER], [PR], and [PE].

As an illustration, Fig. 1 depicts possible allocations for the same instance: while the first violates [PR]
and the second violates [PE], the third and fourth are both valid allocations that, moreover, allocate to the
same set of agents {a, b, c}. Note also that {a, b, c} is the only set of agents who can be allocated via a valid
allocation; there is no valid allocation in which agent d gets allocated. (We revisit this idea in Section 4.1.)

3 An Algorithmic Characterization of Valid Allocations

The primary concern of our work is to develop efficient algorithms that, given an instance with quotas,
eligibility lists, and priorities, select a valid allocation satisfying some additional properties. To this end, we
require an algorithmic way to characterize the set of valid allocations. Note that it is straightforward to find
an allocation that satisfies [QR], [ER], and [PR] (and is also non-wasteful Pathak et al. [2021], Delacrétaz
[2021]) — for example, via a round-robin policy where each category sequentially picks their top remaining
agent. However, as Allocation 2 in Fig. 1 demonstrates, this may not ensure [PE]. On the other hand,
any maximum-cardinality matching satisfies [QR] and [PE]. The challenge is to achieve all four desiderata
simultaneously.

Our main result shows that there is in fact a bijection between the set of agents selected in valid allocations,
and the set of maximum weight matchings under certain valid weights. In Section 3.1, we show that in
any instance, a valid allocation can be found using a simple weighted bipartite matching LP. Subsequently,
in Section 3.2, we explore some consequences of this LP formulation, including a complete characterization
of all valid allocations and a discussion of their geometry; we also show that such a characterization is
impossible for stable matchings.

3.1 Finding Valid Allocations via Weighted Matchings

As the basis of our formulation, we start with the following LP, which we denote by (P0).

(P0) max V (x)

subject to
∑
a∈A

xa,c ≤ qc for all c ∈ C∑
c∈C

xa,c ≤ 1 for all a ∈ A

xa,c = 0 for all a ∈ A, c ∈ C with a /∈ Ec
xa,c ≥ 0 for all a ∈ A, c ∈ C.

The decision variables x = (xa,c)a∈A,c∈C represent the amount allocated to agent a through category c. The
three sets of constraints enforce [QR], the unit demand of agents, and [ER], respectively. The objective,
V (x) :=

∑
a∈A

∑
c∈C xa,c is the total allocation of the agents; maximizing V (x) ensures Pareto efficiency.

Note that the constraints of (P0) encode a bipartite b-matching polytope. (P0), however, does not incorporate
the category’s priorities, so its solutions may not satisfy [PR]. Adding constraints that enforce respect for
priorities appears non-trivial. In particular, the set of valid allocations is not even closed under convex
combinations, as demonstrated in Fig. 2.
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x:

α (2) β (2)

a a

b b
c e

d f

y:

α (2) β (2)

a a

b b
c e

d f

Figure 2: Consider the two integral allocations x and
y depicted for the above allocation instance (taken from
Delacrétaz [2021]). Both x and y are valid; however,
the fractional allocation z = 1

2
(x + y) does not respect

priorities: in particular category α gives agent d an
allocation zd,α = 1

2
> 0, but agent c ⪰α d is not fully

allocated.

The critical observation is that one can perturb the coefficient of each xa,c in the objective to 1 − δa,c in
such a way as to ensure that any optimal solution to the perturbed LP satisfies all of the desiderata. To do
so, we introduce the notion of a valid perturbation.

Definition 2 (Valid Perturbation). A perturbation profile (δa,c) is valid if it satisfies the following
three properties:

Positivity: δa,c > 0 for all a ∈ A, c ∈ C.

Small Effect:
∑
a∈A

∑
c∈C

δa,c ≤ 1
2 .

Consistency: a ⪰c a
′ if and only if δa′,c ≥ δa,c.

Now, consider the modified objective

Vδ(x) :=
∑
a∈A

∑
c∈C

xa,c ·
(
1− δa,c

)
= V (x)−

∑
a∈A

∑
c∈C

δa,c · xa,c.

Let (Pδ) be the LP with the same constraint polytope as (P0), but with objective Vδ(x). The following
theorem shows that the solutions to any such perturbed LP give allocations satisfying all of our desiderata.

Theorem 1. Let δ be any valid perturbation profile, and let x∗ be a solution to (Pδ). Then, x∗ is a valid
allocation (i.e., it satisfies [QR], [ER], [PR], and [PE]).

Proof. The constraints immediately ensure that any feasible solution of (Pδ) satisfies [QR] and [ER]. To
establish [PR], let x be a feasible solution, a, a′ be agents and c a category such that a′ ≻c a, xa,c = ε1 > 0
and

∑
c′ xa′,c′ = 1− ε2 < 1. Then, we can decrease xa,c and increase xa′,c by min(ε1, ε2) without violating

any constraints. Since δ is consistent, we have δa,c < δa′,c, so the reassignment strictly increases the objective
value. Thus, such an x is not optimal, and x∗, being optimal, satisfies [PR].

It remains to establish [PE]. Note that for any optimal solution x̂ to (P0), we have

V (x∗) ≥ Vδ(x
∗) ≥ Vδ(x̂) = V (x̂)−

∑
a∈A

∑
c∈C

x̂a,cδa,c ≥ V (x̂)−
∑
a∈A

∑
c∈C

δa,c ≥ V (x̂)− 1
2 .

Here, the first inequality follows since each x∗
a,c, δa,c ≥ 0. The second inequality follows since x∗ is an optimal

solution to (Pδ). The third inequality follows because the unit demand constraints ensure that each x̂a,c ≤ 1.
Finally, the fourth inequality follows since δ has small effect.

Additionally, x̂maximizes V among all feasible solutions to (P0), which include x∗. Therefore, V (x̂) ≥ V (x∗).
Combining both inequalities, we find that

V (x̂) ≥ V (x∗) ≥ V (x̂)− 1
2 . (1)

Observe that the constraint matrix of (P0) is totally unimodular, as it encodes a b-matching polytope.
Consequently, since all of the quotas qc are integral, every corner point of the constraint polytope is integral.
As the sum of entries (xa,c), V (x) is integral at corner points, and therefore at all maximizers x of V .
In particular, since x̂ maximizes V , V (x̂) is integral. If x∗ is a corner point, then V (x∗) is also integral.
However, integral solutions satisfying the bounds in Eq. (1) require V (x̂) = V (x∗).
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If x∗ is not a corner point, then we write x∗ =
∑

i λix
(i) as a convex combination of corner points x(i).

Because x∗ maximizes Vδ, each of the x(i) must also maximize Vδ. By the argument from the previous
paragraph, V (x̂) = V (x(i)) for all i. But then, the convex combination x∗ must also have V (x∗) = V (x̂).
Thus, each maximizer x∗ of Vδ (whether or not it is a corner point) is also a maximizer of V , and hence
satisfies [PE].

A surprising consequence of this result is that in any priority-respecting allocation problem, Pareto efficiency
comes “for free” — the total allocation size under a valid integral allocation remains the same, irrespective
of the priority orderings! The following proposition asserts that this is in fact true more generally for any
valid allocation (integral or fractional).

Proposition 1. Let V ∗ be the size of the allocation returned by (P0) (i.e., satisfying [QR], [ER], and
[PE]). Then, given any priority orders (⪰c)c∈C, any valid allocation x has V (x) = V ∗.

In particular, this proposition establishes that all Pareto efficient allocations are maximal.

Proof. We will argue the contrapositive — i.e., any x that does not maximize V (x) is not [PE]. Consider the
flow network representation of the allocation problem shown in Fig. 3. The nodes on the left side correspond
to the agents a ∈ A, and the nodes on the right to categories c ∈ C. Edges are drawn between each eligible
agent-category pair. Finally, given an allocation x, for every category c that has an eligible agent a ∈ Ec
who is not fully allocated in x, we color all its eligible agents (i.e., all a′ ∈ Ec) red, whether or not they are
fully allocated.

A C

s t

...

...
...

...

1

1 qc1

qcm

1

1

ai ⪰cj
θj

ai

a1

an

cj

c1

cm

Figure 3: A flow network representation of an allocation instance. The source node s has a unit-capacity edge to each
agent node. Each category node has an edge to the sink node t with capacity equal to that category’s quota. There are
unit-capacity edges from each agent node to the nodes of categories in which the agent is eligible.

If x is not a maximal allocation, then there is an augmenting path P = (s, a1, c1, . . . , ak, ck, t) in this flow
network. We record the following observations.

1. a1 is red: The in-weight of each agent node is its allocation. Augmenting along P will increase the
in-weight of its first agent node, so this agent node must not have been fully allocated.

2. ck has not exhausted its quota: The out-weight of each category node is its allocated quota. Augmenting
along P will increase the out-weight of its last category node, so this category must not have exhausted
its quota.

3. Given any red agent a, there is a path of the form s→ a0 → c0 → a in the residual graph for x, where
a0 is a highest-priority agent in c0 that is not fully allocated: this follows from the definition of red
agent nodes.
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Let ai be the last red node in P (there must be such a node by Observation 1), and consider the alternate
augmenting path P ′ = (s, a0, c0, ai, ci, . . . , ak, ck, t) using the “shortcut” from Observation 3. Augmenting
along P ′ will strictly increase the allocation to a0 and conserves the allocations of ai, . . . , ak. Let y be the
allocation after this augmentation. By the construction of the flow network, y still satisfies [ER] and [QR].
Moreover, every agent a ⪰c0 a0 is fully allocated, and every agent ai, . . . , ak maintains its allocation in y, so
y also satisfies [PR]. Thus, y is a Pareto improvement to x, meaning x did not satisfy [PE].

The fact that there is at least one valid allocation with size V ∗ was established by Aziz and Brandl [2021]
based on the properties of their Reverse Rejection algorithm. Theorem 1 gives a simple way to see why
this holds, and Proposition 1 shows it to be true for all valid allocations. Moreover, Theorem 1 provides
a much more efficient algorithm for selecting a valid allocation: compared to Reverse Rejection, which
requires one to solve |A| separate b-matching problems, our approach only requires solving a single weighted
b-matching problem, which can be efficiently solved, for instance using the Hungarian algorithm [Ramshaw
and Tarjan, 2012].

Corollary 1. A valid allocation can be found in O(|C| |A| q + q2 log q) time.

3.2 The Subtle Geometry of Priority-Respecting Allocations

To conclude this section, we discuss three issues related to our algorithm for locating valid allocations.
First, we introduce an additional property that allows us to completely characterize the set of valid integer
allocations. Next, we consider the geometry of the set of valid allocations. Finally, we consider whether an
analogous LP perturbation can be used for finding stable matchings.

Characterizing all Valid Integral Allocations
By Theorem 1, we know that solving (Pδ) with any valid δ locates a valid integral allocation. A follow-up
question is whether all valid integral allocations are solutions of (Pδ) for some choice of δ. This turns out not
to be the case: for example, consider Allocations 3 and 4 in Fig. 1. While both are valid, and the former can
be realized as a solution to a perturbed LP, for the latter allocation, under any valid perturbation, swapping
from xa,γ = xb,β = 1 to xb,γ = xa,β = 1 (as in Allocation 3 in Fig. 1) leads to an increase in Vδ.

Fortunately, the problem illustrated by this instance is the only obstacle to realizability, as we show below.
To formalize this, we introduce an additional property that we call category stability.

[CS] Category Stability: No group of categories can organize an agreeable trade through which at least
one category transfers allocation to a higher-priority agent. Formally, there do not exist j ≥ 2 categories
c0, c1, . . . , cj = c0 and agents a0, a1, . . . , aj = a0 such that for all 0 ≤ i < j, xai,ci > 0 and ai+1 ⪰ci ai,
and at least one of the priority relations above is strict.

Note that category stability is not an added restriction on agents selected via valid allocations — in particular,
given a valid allocation x that violates [CS], we can modify it to get another valid allocation y that satisfies
[CS] and allocates to each agent to the same extent (i.e.,

∑
c xa,c =

∑
c ya,c for all a). In other words, [CS]

only discriminates among valid allocations which are equivalent in terms of the set of allocated agents. We
are ready to state our main equivalence theorem.

Theorem 2. Let x be a valid integral allocation. Then x is a solution to (Pδ) for some valid δ if and only
if x satisfies [CS].

The main tool we use to show the reverse implication of Theorem 2 is an alternate characterization of the
valid allocations that additionally satisfy [CS] as those realizable through serial dictatorship. Let Σ be
the collection of all multi-set orderings of

{
cqc

}
c∈C (i.e., the set of all sequences of length q wherein each

category c ∈ C appears qc times). We refer to Σ as the set of choice orders for our system. For a given
choice order σ ∈ Σ, we define the serial dictatorship allocation xσ to be the (integral) allocation obtained by
cycling through categories in the order given by σ, and allocating to the highest-priority unallocated agent
in the chosen category. This process is formalized in Algorithm 1. For ease of presentation, we ignore ties
in Algorithm 1. This assumption corresponds to each category having a total ordering over eligible agents; in
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case there are multiple unallocated agents in the same highest-priority tier, we can use any fixed tie-breaking
rule (alternately, any fixed extension of the total preorder ⪰c).

Algorithm 1 Serial Dictatorship Allocation

Input: Choice order σ ∈ Σ

1: for each σi = c in σ in order do
2: if c has remaining quota and an eligible unallocated agent then
3: c allocates to its highest-priority unallocated agent.

Serial dictatorship allocations xσ generalize the sequential reserve allocations of Pathak et al. [2021]. It is
straightforward to see that they (by definition) satisfy [QR], [ER] and [PR]. Note, however, that xσ may
not be Pareto efficient (for example, consider allocation 2 in Fig. 1 — it can be realized as a serial dictatorship
allocation xσ with σ = (β, γ, α).) The following lemma fully characterizes the allocations obtained via serial
dictatorship and generalizes a main result of Pathak et al. [2021].

Lemma 1. For all σ ∈ Σ, the serial dictatorship allocation xσ satisfies [QR], [ER], [PR], and [CS].
Conversely, every valid integral allocation (i.e., obeying [QR], [ER], [PR], and [PE]) that additionally
satisfies [CS] corresponds to a serial dictatorship allocation xσ under some choice order σ ∈ Σ.

Proof. For the first claim, it is immediate from the definition of serial dictatorship that xσ satisfies [QR]
(since σ contains qc copies of c), [ER] (since each category c only allocates to eligible agents), and [PR]
(since a category always allocates to a highest-priority unallocated agent). To see that x is stable, for any
subset S of allocated agents consider the first time that agent a ∈ S is allocated by a category c. By
definition, c selects a highest-priority unallocated agent, so a ⪰c s for all s ∈ S. Thus, S cannot form an
unstable cycle.

To show the second claim (that every valid integral allocation satisfying [CS] can be generated via a serial
dictatorship allocation), we perform an induction on q. The base case q = 1 is trivial: if c is the category
with qc = 1, then any valid allocation that also satisfies [CS] must give this unit to a highest-priority eligible
agent in c, if one exists.

Suppose that the claim holds for all instances with q = k − 1, and consider an instance with quota q = k.
We first show that in any valid and [CS] allocation x (with V (x) > 0), a highest-priority agent in some
category is allocated from that category. Suppose that this were not the case, and consider an agent a who
is allocated from category c. By assumption, there is some highest-priority agent a′ who is not allocated
from c. If a′ is unallocated, then x would violate [PR]. Hence, a′ must be allocated in some other category
c′. By assumption, a′ does not have highest priority in c′, meaning that the highest-priority agent a′′ of c′ is
not allocated in c′. Continuing this reasoning, we will (by finiteness) eventually revisit an agent and discover
an unstable cycle, contradicting that x satisfies [CS].

Now, let c∗ be a category allocating to its highest-priority agent, and a∗ the highest-priority agent in c∗.
We can realize this allocation by having c∗ be the first category in the ordering σ. What remains is an
allocation problem for agents A \ {a∗} to categories C, where the quota of c∗ has been reduced by 1. Let
y be the restriction of x to this problem. It is immediate that y is a valid and [CS] allocation. By our
inductive hypothesis, y can be realized as a serial dictatorship allocation yσ′ in this sub-problem. Then,
x(c∗,σ′) realizes x.

Using this lemma, we can complete the proof of Theorem 2.

Proof of Theorem 2. For the forward direction, we argue the contrapositive. Suppose that x is feasible for
(Pδ) for some valid δ. Suppose that x violates [CS], so there are a0, a1, . . . , aj = a0 ∈ A and c0, c1, . . . , cj =
c0 ∈ C for which xai,ci = 1, xai+1,ci = 0, and ai+1 ≻ci ai for each 0 ≤ i < j. We construct an alternate
solution x′ with x′

ai,ci = 0 and xai+1,ci = 1 for each 0 ≤ i < j and all other variables the same as x. Note that
x′ is also feasible since a′ ≻c a =⇒ a′ ∈ Ec, and all categories and agents have the same total allocation.
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Since δ is consistent, we have δai+1,ci < δai,ci for each 0 ≤ i < j, so the reassignment strictly increases the
objective value. Thus, x is not optimal, so it is not a solution to (Pδ).

For the reverse direction, we must construct an assignment of perturbations δ that realize the allocation
x as a solution. It will be convenient to argue using positive perturbations (i.e., a bonus rather than a
penalty). That is, for every a ∈ A, c ∈ C, we set the coefficient of xa,c in the objective as 1 + ρa,c, such that
ρa,c ∈ [0, ρmax] for all eligible (a, c), and ρa,c ≥ ρa′,c for all a ⪰c a

′. To convert the ρa,c to valid perturbations

δa,c (Definition 2), we can simply re-scale them by 1
1+ρmax

to get δa,c =
ρmax−ρa,c

1+ρmax
. Then, it is easy to check

that these perturbations satisfy Positivity and Consistency. Also, by choosing ρmax = 1
2|C| |A| , we ensure

that
∑

a,c δa,c ≤ |C||A| · ρmax/(1 + ρmax) ≤ 1/2; thus, the δa,c constitute a valid perturbation.

Let v := V (x). By Lemma 1, x = xσ for some ordering σ = (σ1, . . . , σq) ∈ Σ. We may also, without loss of
generality, assume that the first v entries of σ result in the allocation of an agent: note that any entry σi

corresponding to a depleted category can be moved to the end of the ordering without affecting the agents
available to any later entry.

Now, we set the perturbations as follows:

1. Let a be the top-ranked agent in the category σ1. We set ρa,σ1 = ρmax.

2. In stage i, let r ≤ i be the lowest rank of an unallocated agent in category σi. Let r
′ < r be the rank of

the agent most recently allocated in σi, with r′ = 0 if no agent has yet been allocated through σi. For
j = r′ + 1, r′ + 2, . . . , r, let aj be the agent with rank j in σi, and define Ai = {ar′+1, ar′+2, . . . , ar}.
We set ρaj ,σi

= ρmax/(|A|+ 1)i−1 + (r − j) · ε, for some ε≪ ρmax/(|A|+ 1)|A|.

The main invariant maintained by the above construction is that at any stage i, the smallest perturbation
ρa,c for c = σi and any a ∈ Ai is greater than the sum of all perturbations of (a, c) pairs set in rounds i′ > i.
As a result, the optimal matching among pairs (a, c) considered in rounds i and greater must include at least
one pair (aj , σi) for some aj ∈ Ai. Moreover, since the agents ar′+1, ar′+2, . . . , ar−1 were allocated in rounds
prior to i, any optimal matching with respect to the ρa,c must have xar,σi = 1. This exactly corresponds to
the outcome xσ realized via Serial Dictatorship with order σ. Thus, xσ is realized as a solution to (Pδ).

Fractional Valid Allocations
Our perturbed LP procedure gives a way to locate all valid and category stable integral allocations, as these
are corner points of our b-matching constraint polytope; however, this does not imply anything about the
set of valid fractional allocations. Fig. 2 demonstrates that this set need not be convex; here, the convex
combination of two integral valid allocations is not valid. Thus, there could exist valid fractional allocations
outside the convex hull of valid integral allocations. The following proposition rules out this possibility.

Proposition 2. Suppose that x is a valid fractional allocation. Then, we can represent x as a convex
combination of valid integer allocations.

The following lemma will be useful in our proof of Proposition 2.

Lemma 2. Consider any valid allocation x with allocated agents Ax = {a ∈ A :
∑

c xa,c > 0}. Then, for
any agent a∗ ∈ Ax who is partially allocated (i.e., 0 <

∑
c xa∗,c < 1), there exists a valid allocation y with

Ay ⊆ Ax and in which a∗ is fully allocated (i.e.,
∑

c ya∗,c = 1).

Proof. Let c∗ ∈ C be any category with 0 < xa∗,c∗ < 1. We argue that there is a way to modify x which
maintains validity, strictly increases xa∗,c∗ , and strictly decreases the number of non-integral allocation
variables. Since the number of eligible category-agent pairs (and therefore, the number of non-integral
allocations) is finite, we can repeatedly apply this modification until a∗ is fully allocated.

To describe the modification, we first construct an undirected graph as follows.

— The nodes of the graph will correspond to (a, c) pairs with 0 < xa,c < 1.

— We color an agent a, and all its associated nodes, red if it is not fully allocated (i.e.
∑

c′∈C xa,c′ < 1),
otherwise white.
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— We add an edge between any two nodes that share a category.

— We add an edge between any two white nodes that share an agent.

Note that the third bullet implies that the connected components of this graph describe a partition of the
categories. We argue that the red node (a∗, c∗) is in the same connected component as another red node. For
sake of contradiction, suppose not. Note that the total quota of all categories associated with this component
is an integer. In addition, the total allocation to all of the agents associated with this component is not an
integer: the white agents each have allocation 1, and the singular red agent has a non-integral allocation.
However, all of the quotas must be exhausted by the allocation. If not, a path from (a∗, c∗) to a node (a, c)
where c has not exhausted its capacity describes a way to adjust the allocation to increase the total allocation
to a∗ and leave all other agents’ total allocations unchanged, violating Pareto efficiency. However, this is a
contradiction: the total quota of these categories cannot be both integral and non-integral.

Suppose that (â, ĉ) is another red node in (a∗, c∗)’s connected component. By definition, there is a path
between these two nodes. Moreover, the structure of the graph allows us to assume (without loss of generality)
that the edges in this graph alternate between connecting nodes that share an agent and nodes that share
a category. Since red nodes are only connected to nodes with which they share a category, this path has an
odd length. We modify the allocation by following the path from (â, ĉ) to (a∗, c∗). First, we subtract ε > 0
from xâ,ĉ. Then, we add ε to the variable corresponding to the next node on the path, repeating this process
until we add ε to (a∗, c∗): the first bullet point allows us to choose ε such that one of these modifications
results in a variable assuming value in {0, 1}.

To finish the proof, we must argue that this modification results in another valid allocation, which we denote
by x′. First, note that the modification did not change the total allocation of any category; it only transferred
quota from one agent to another. Thus, x′ satisfies [QR]. In addition, we conclude by Proposition 1 that x′

satisfies [PE]: it is also a maximal allocation. Next, note that the modification does not transfer any quota
to an (a, c) node with xa,c = 0, so x′ satisfies [ER]. Finally, note that the only agent whose total allocation
can decrease from the modification is â, who is red. Therefore, x′ maintains [PR].

We are now ready to prove Proposition 2.

Proof of Proposition 2. We argue this claim in two stages. First, we argue that x can be represented as a
convex combination of valid allocations in which each agent has an integer total allocation. This follows
from Lemma 2. In this proof, we obtained an alternate allocation x′ from x by perturbing nodes along a
path by ε. Similarly, add ε′ > 0 to xâ,ĉ, subtract ε

′ from the next node, repeating until we subtract ε′ from
(a∗, c∗) to obtain an alternate valid allocation x′′: the first bullet point allows us to choose ε′ such that one
of these modifications results in a variable assuming value in {0, 1}. But then we can express x as the convex
combination

x = ε′

ε+ε′ · x
′ + ε

ε+ε′ · x
′′.

We can repeat this process with x′ and x′′, just as in the proof of Lemma 2. Since each step strictly decreases
the number of non-integral variables, eventually, we will be left with a convex combination of valid allocations
{y(1), . . . ,y(ℓ)} in which each agent has an integer total allocation. (This is the termination condition of the
procedure from Lemma 2.) To conclude, we must further represent each y(i) as a convex combination of valid
integral allocations (i.e., allocations in which each allocated agent receives an entire unit from exactly one
category). This is an application of the Birkhoff-von Neumann theorem: since each agent is fully allocated,
we can interpret y(i) as fractional matchings between the agents and categories in the subgraph of edges

(a, c) with y
(i)
a,c > 0. Validity is preserved since these integer matchings preserve the total allocation to each

agent and category.

The result, however, provides some insight into the geometry of the set of valid allocations — it consists of a
union of convex sets, each with integer corner points. The valid allocations in the example from Fig. 2 form
two non-coplanar triangles with a common edge. It is an interesting open direction to further characterize
the sets of valid allocations that may arise from priority-respecting allocation instances. For example, are
these sets necessarily connected?
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LP Perturbations and Stable Matching

As noted in Section 1, a closely related problem to priority-respecting allocation is stable matching. Both
seek bipartite matchings that conform to a set of preferential constraints; moreover, the existence of so-
lutions in both problems is implied by Scarf’s Lemma (see Appendix A). Central to this discussion is the
observation that unlike for priority-respecting allocation, one cannot realize stable matchings as the solu-
tions of a perturbed b-matching polytope under a particular class of perturbations. This shows that while
priority-respecting allocations and stable matchings appear syntactically similar, they have very different
algorithmic properties.

4 The Complexity of Selecting Valid Allocations

In this section, we consider three possible extensions of the basic problem of selecting valid allocations. In
each extension, we consider the problem of selecting from among valid allocations subject to a particular
class of external objectives. Surprisingly, in each case, we show that the valid-allocation selection problem
straddles the line of computational efficiency; while one given selection rule admits an efficient algorithm, a
closely related selection rule is computationally hard.

4.1 Including/Excluding Agents from Valid Allocations

To formalize our first set of valid-allocation selection criteria, we first define two types of agents

Definition 3 (Unanimous/Serviceable Agents). Given an instance I =
(
A, C, (qc), (Ec), (⪰c)

)
and an

agent a ∈ A,

— Agent a is unanimous in I if it is fully allocated under every valid allocation x (i.e.,
∑

c xa,c = 1).

— Agent a is serviceable in I if there is some valid allocation x in which a is allocated (i.e.,
∑

c xa,c > 0).

As an example, consider the instance in Fig. 1; here, one can check that agents {a, b, c} are unanimous (and
therefore serviceable), while agent d is not serviceable. Note that though we define serviceability in terms of
non-zero allocation, as a consequence of Proposition 2, we have that any agent who can be partially allocated
via a fractional valid allocation can also be fully allocated via an integral valid allocation. Hence, we can
equivalently define an agent to be serviceable if it is allocated in some integral allocation.

We now show that while there is a polynomial-time algorithm to determine whether an agent is unanimous,
determining whether an agent is serviceable is NP-hard. For the first claim, we establish an equivalent
characterization of unanimous agents in terms of a restricted allocation instance.

Definition 4 (Restriction). Given an allocation instance I =
(
A, C, (qc), (Ec), (⪰c)

)
and an agent a ∈ A,

the a-restriction of c, denoted by I\a, is another allocation instance with the same A, C, and (qc). Its eligible
sets (E ′c) are given by

E ′c = Ec \
(
{a} ∪ {a′ ∈ A : a ≻c a

′}
)
,

and its priorities (⪰′
c) are the induced relations of (⪰c) on (E ′c).

Given a subset A ⊆ A, the A-restriction of I, denoted by I\A, is defined similarly, where the eligible sets
are the intersections of the eligible sets of the a-restrictions for all a ∈ A.

Intuitively, one can think of the a-restriction as cutting each of the priority lists at agent a. Alternatively,
one can view the a-restriction as the instance that would result if we committed to never allocating to a
(and therefore, due to the priority constraints, never allocating from a category c to anyone ranked below a
in c).

Proposition 3. Let V ∗ be the value of (P0) on instance I. For a given agent a ∈ A, let V ∗
\a be the value of

(P0) on I\a. Then, a is unanimous if and only if V ∗ > V ∗
\a.
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Proof. We argue the forward direction by its contrapositive. Suppose that V ∗ = V ∗
\a, and let x be a solution

to (P0) for the restricted instance I\a. By Proposition 1, there must be another solution y that additionally
respects priorities (i.e., is valid). Note that a is not eligible in any category in I\a, so ya,c = 0 for every
c ∈ C. However, y is also a valid allocation for the original instance I: eligibility in I\a implies eligibility
in I; quota constraints are the same in I and I\a; priorities are respected since the definition of restriction
ensures that any eligible agent in I who is not fully allocated in y must be ranked below fully allocated
agents in I\a, and hence in I; finally, y returns a matching of maximum size in I, and so is Pareto efficient
in I. Thus we have located a valid allocation that does not include a, and hence a is not unanimous.

We also argue the reverse direction by its contrapositive. Suppose a is not unanimous — then, there is a valid
allocation x in which a is not allocated. By definition, this allocation has value V ∗. Since x satisfies [PR],
no category can allocate to an agent with lower priority than a. Thus, x is feasible for I\a, so V ∗ = V ∗

\a.

As immediate corollaries, we can derive two sufficient conditions for an agent to be unanimous.

Corollary 2. Let V ∗ be the value of (P0). Then an agent a is unanimous if either

— the union of all eligible agents in the a-restriction has cardinality less than V ∗, or
— there is some category c with a ∈ Ec such that the a-restriction of c has size less than qc.

In other words, an agent must be allocated if they are either in the top qc agents in any category c or
alternatively if the total (over categories) number of higher-ranked agents is less than the total number of
items available. On the other hand, the problem of deciding whether an agent is serviceable or not turns out
to be NP-hard.

Proposition 4. Given an instance I, deciding whether an agent a ∈ A is serviceable is NP-hard.

Proof. We show this via a reduction from the Exact Cover By 3-Sets, or X3C, problem [Karp, 1972],
which is defined as follows.

Definition 5 (X3C). Given a ground set E of 3n elements and a collection of m subsets S = {S1, . . . , Sm},
with each |Si| = 3, the X3C problem asks whether there are n subsets Si1 , . . . , Sin whose union is E.

We consider the following reduction from X3C, which is visualized in Fig. 4.

— A consists of the following 5m− n+ 1 agents:

– 3n agents representing the ground set elements e ∈ E

– m agents s1, . . . , sm representing the subsets Si ∈ S

– 4(m− n) filler agents, labeled f1, . . . , f4(m−n)

– the distinguished agent a

— C consists of |C| = m+ 1 categories: a set category αi for each Si ∈ S and a category β.

— Each set category has quota 4, and β has quota 1.

— Each set category αi has 4(m − n + 1) eligible agents: the 4(m − n) filler agents, who have priority
over agent si, who has priority over the 3 element agents in Si.

— The category β has 3n+ 1 eligible agents: the 3n element agents, who have priority over agent a.
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E = {e1, e2, e3, e4, e5, e6}

S =
{
{e1, e3, e6},

{e1, e4, e5},

{e2, e4, e5}
}

−→

α1 (4) α2 (4) α3 (4) β (1)

f1 f1 f1 e1
f2 f2 f2 e2
f3 f3 f3 e3
f4 f4 f4 e4
s1 s2 s3 e5
e1 e1 e2 e6
e3 e4 e4 a
e6 e5 e5

Figure 4: An example reduction from an X3C instance (with n = 2, m = 3) to a reserve allocation instance.
This is a “yes” instance of X3C: the first and third sets form a partition of E. Accordingly, the reserve
allocation instance on the right admits a valid allocation, visualized in red, that gives to a.

This reserve allocation instance has size which is polynomial in m and n, and it can be constructed in
polynomial time. It remains to argue the correctness of the reduction. First, suppose that we are given a
“yes” instance to the X3C problem; that is, there are Si1 , . . . , Sin that disjointly cover E. Then, consider
the following allocation:

— In each category αij corresponding to a set Sij , allocate to agent sij and the three element agents.

— In the remaining m− n set categories, allocate to four (distinct) filler agents arbitrarily.

— In category β, allocate to agent a.

Note that this is a valid allocation. It satisfies [QR] and [ER] by construction, and it exhausts all quotas, so
it is [PE]. It allocates to all filler and element agents, and to element agents only through categories whose
set element is also allocated, so it is [PR]. This establishes that a is serviceable.

Conversely, suppose that we reduce to an allocation instance in which a is serviceable, so there is a valid
integral (by Lemma 2) allocation φ in which φ(a) ̸=⊥. By construction, a is eligible only in category β, so
a must receive the only unit of β. For φ to respect priorities in β, it must allocate to each element agent,
which must happen within the set categories. But then, to respect priorities in any set category, φ must
allocate to all filler agents as well. In total, these required allocations comprise 4m− n+ 1 units, leaving n
units to allocate to the set agents {si}. Since the allocation to one set agent permits the allocation to at
most three additional element agents, to allocate to all 3n element agents, φ must allocate to exactly n set
agents, and their corresponding sets must be pairwise disjoint. In summary, the n set agents allocated in
φ, si1 , . . . , sin , correspond to n sets Si1 , . . . , Sin that disjointly cover E, so we have reduced from a “yes”
instance of X3C.

In this context, Saban and Sethuraman [2015] study the complexity of computing selection probabilities
under random serial dictatorship (where agents are ordered uniformly at random, and then pick their favorite
remaining items in turn), and show that while one can efficiently identify items which have probability 1
of being selected by some agent, it is NP-hard to identify items which have selection probability 0. When
specialized to this context, our results in this section recover and generalize this characterization.

4.2 Incorporating Agent Utilities in Selecting Valid Allocations

As a second extension, we consider how we can augment our basic model to incorporate agents’ utilities for
allocations from various categories. We relax our assumption of agent indifference, and equip each agent
a ∈ A with a utility function ua : C → (0, 1] that expresses the value that they derive from an allocation in
each category. Thus, given an allocation x, the realized utility of agent a ∈ A is given by

ua(x) =
∑
c∈C

ua(c) · xa,c.
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In this setting, the natural objective is no longer only to allocate to as many agents as possible, but rather
to use the realized utility of the agents to select valid allocations. There are two potential ways to do so:
First, we can select valid allocations that are Pareto efficient with respect to agent utility. Alternatively,
we can attempt to optimize some aggregate welfare function of the agents’ realized utilities. We next show
that while the first goal admits an efficient algorithm, the second goal is NP-hard for most natural utility
aggregation functions.

First, we consider locating an allocation that is Pareto efficient with respect to agent utilities. To this end,
in this section, we denote our usual notion of category-side Pareto efficiency (i.e., the [PE] property defined
in Section 2) by [C-PE], and formalize Pareto efficiency from the viewpoint of agents as follows.

[A-PE] Agent-side Pareto Efficient: An allocation x is Pareto efficient with respect to agent
utilities if there is no allocation y satisfying [QR], [ER], and [PR] such that:
— Each agent receives at least as much utility through y: ua(y) ≥ ua(x).
— At least one agent receives strictly higher utility through y than through x.

Intuitively, an allocation is agent-side Pareto efficient if there is no incentive for the agents to attempt to
trade their allocations (from the different categories); any trade would violate one of the other constraints
([ER] or [PR]), decrease some involved agent’s utility, or leave all utilities unchanged. We now argue that
we can select an agent-side Pareto efficient allocation via the following two-stage algorithm (Algorithm 2). At
a high level, the first stage of the algorithm determines which agents will be included in the final allocation,
while the second stage maximizes the utility realized by these agents.

Algorithm 2 Valid Allocation Selection with Agent-Side Pareto Efficiency

1: Input: Allocation instance I and agent utilities (ua)a∈A
2: Solve (Pδ) for any valid δ to pick an integral valid allocation x
3: A←

{
a ∈ A :

∑
c xa,c = 0

}
4:

(
C,A, (qc), (E ′c), (⪰′

c)
)
← I\A

5: Define U = max
a,c
{ua,c} and δ′a,c =

U−ua(c)
2|A| |C| (Note: higher ua(c) =⇒ smaller δ′a,c)

6: Solve (Pδ′) for instance I\A to locate an integral allocation y
7: Return: allocation corresponding to y

Theorem 3. Algorithm 2 computes an allocation satisfying [QR], [ER], [PR], and [A-PE].

Proof. The constraints of (Pδ′) ensure that y satisfies [QR] and [ER] in I\A. Moreover, since the restriction
operation leaves quotas unchanged and reduces the set of eligible agents, this allocation also satisfies these
desiderata in I.

Next, note that y is a [QR], [ER], [PR], and maximal allocation in I\A. By construction,∑
c∈C

∑
a∈A

δ′a,c · xa,c ≤
∑
c∈C

∑
a∈E′

c

δ′a,c ≤
∑
c∈C

∑
a∈E′

c

1
2|A| |C| ≤

1
2 .

Therefore, the objective values satisfy

V (x) ≥ V (y) ≥ Vδ′(y) ≥ Vδ′(x) = V (x)−
∑
c∈C

∑
a∈A

δ′a,c · xa,c ≥ V (x)− 1
2 .

Using the fact that x and y are integral allocations, we find that V (x) = V (y). Thus, y allocates to all
agents in the restricted instance, so it satisfies [PR]; the definition of the restriction I\A ensures that no
unallocated agent in A has priority over an agent allocated in y.

It remains to argue that y is agent-side Pareto efficient. The perturbations δ′a,c are monotone decreasing in
the utilities ua(c). Therefore, y maximizes the total utility of the allocated agents within I\A. Therefore,

16



any alternate allocation in which one agent realizes a higher utility must also include an agent who realizes
a lower utility, so the allocation given by y satisfies [A-PE].

Note that Algorithm 2 does not admit an analogous realizability result to Theorem 2. As argued above, the
computation of x in the first stage ensures that the final allocation is maximal. However, not every utility
Pareto efficient allocation is maximal, as demonstrated by the example in Fig. 5.

x:

α (1) β (1)

a a

b

y:
α (1) β (1)

a a
b

Figure 5: Consider the above instance with ua,α = 1, ua,β = ub,α = 1
3
. The maximal (so [C-PE]) allocation shown

on the left is [A-PE], and will be output by Algorithm 2. However, the allocation shown on the right is also [A-PE],
and moreover utility-maximizing. However, as this allocation is not [C-PE], it cannot be realized by Algorithm 2.

Next, we turn our attention to the hardness of maximizing aggregate functions of the agents’ realized utilities.
Our main result in this setting is captured by the following theorem:

Theorem 4. Let (Fn : [0, 1]n → R)∞n=1 be a family of aggregation functions that are all continuous and
strictly increasing in each of their arguments. Then, the following problem is NP-hard: Given an allocation
instance I with A = {a1, . . . , an}, select a valid allocation maximizing the aggregate agent utility under Fn,
i.e., find

x∗ ∈ argmax
x valid

{
Fn

(
ua1

(x) , . . . , uan
(x)

)}
.

Proof. We restrict attention to utilities of the following form:

ua1
(c) = 1 for all c ∈ C

uaj
(c) = u for all c ∈ C for all j ≥ 2

for some u ∈ (0, 1]; in other words, all agents are indifferent regarding which category they are allocated
through, and there is (weakly) higher utility for allocating agent a1. We write tx ∈ [0, 1]|A| for the vector of
total agent allocations with (tx)j =

∑
c xaj ,c. We then define

f : (0, 1]× [0, 1]n → R f (u, tx) = Fn ((tx)1, u · (tx)2, . . . , u · (tx)n)

as the aggregate agent utility for a given parameter u and agent allocation x. Inheriting properties of Fn, f
is continuous and strictly increasing in u, and strictly increasing in each (tx)j when u > 0.

Now, suppose that there is some valid allocation x with (tx)1 = τ > 0 (i.e., x allocates to a1) and another
valid allocation y with (ty)1 = 0 (i.e., y does not allocate to a1). Let e1 denote the first standard basis
vector and 1 denote the all ones vector, both in R|A|. Since f(0, τ · e1) > f(0,0) = f(0,1 − e1) and f is
continuous in its first argument, then we can choose some sufficiently small ε > 0 such that

f(ε, τ · e1) > f(ε,1− e1).

Since f is strictly increasing in each agent’s total allocation, the two allocations x,y have aggregate utilities

f(ε, ty) ≤ f(ε,1− e1) < f(ε, τ · e1) ≤ f(ε, tx).

Therefore, we can reduce the problem of deciding whether a1 is serviceable to determining whether the
Fn-maximizing valid allocation x∗ (under the utilities defined above) has value greater than f(ε,1 − e1).
From Proposition 4 we know that checking whether an agent is serviceable is NP-hard — hence, so is the
problem of selecting a valid allocation that maximizes aggregate utility.

Note that this theorem relies on the fact that agents have cardinal utilities for categories. We can use
this theorem to conclude that many natural welfare optimization problems are computationally hard in the
reserve allocation setting. We record two such results below.
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Corollary 3. Given an instance I equipped with a utility function ua for each agent a ∈ A, it is NP-hard
to find a valid allocation x∗ that maximizes total agent utility∑

a∈A

∑
c∈C

ua(c) · xa,c.

This corollary provides a stark contrast to our original setting (concerned with the number of allocated
agents), where maximizing total allocation and ensuring Pareto efficiency were equivalent (see Proposition 1).

Corollary 4. Given an instance I equipped with a utility function ua for each agent a ∈ A, it is NP-hard
to find a valid allocation x∗ that maximizes Nash social welfare

NSW(x) :=

( ∏
a∈A

∑
c∈C

ua(c) · xa,c

) 1
|A|

.

4.3 Auditing Valid Allocations via Optimizing Cutoffs

Thus far, we have considered the quality of allocations only through the formal desiderata that we have
introduced. While theoretically satisfying, such an approach fails to acknowledge their impact on agents
affected by these algorithms in practice. How can we convince the recipients (or, more aptly, non-recipients)
of medical care, school seats, or other resources that decisions have been made fairly? This is discussed
in great detail by Pathak et al. [2021], who suggest that one way addressing this issue is via the notion of
auditability : revealing extra information to agents to help satisfy them that their allocation is appropriate.
In particular, a natural way to audit allocations is by revealing allocation thresholds (or cutoff vectors Pathak
et al. [2021]) in each category. In this section, we study how to select valid allocations to optimize some
metric related to these thresholds.

For notational ease, throughout this case study, we restrict our attention to integral allocations , realized
as maps φ : A → C ∪ {⊥} (where φ(a) = c if and only if xa,c = 1, and φ(a) =⊥ corresponds to a being
unallocated, i.e.,

∑
c xa,c = 0.). This is natural for defining cutoffs, and also is without loss of generality

since our approach in Theorem 1 naturally returns integral allocations.

Definition 6 (Allocation Thresholds). Thresholds θ : C → N corresponding to allocation φ satisfy:

— Every agent allocated in category c ∈ C has rank equal to or less than c’s threshold, i.e.
. φ(a) = c =⇒ rc(a) ≤ θ(c) for all a ∈ A.

— Every unallocated agent has rank equal to or greater than the threshold in each eligible category
. φ(a) =⊥ and a ∈ Ec =⇒ rc(a) ≥ θ(c) for all a ∈ A.

There are two natural thresholds associated with any allocation φ (see Fig. 6 for a visualization):

— The inner threshold of φ, denoted by θ, has θ(c) = max{rc(a) : φ(a) = c}, the maximum rank over
all agents allocated in each category.

— The outer threshold of φ, denoted by θ, has θ(c) = min{rc(a) : φ(a) =⊥, a ∈ Ec}, the minimum
rank over all unallocated eligible agents in each category. If all agents in category c are allocated, we
set θ(c) equal to one more than the maximum eligible rank in the category.

α (3) β (2) γ (2)

a1 a5 a6
a2 a3 , a8 a3
a3 a4 a1
a4 a0 , a9 a8
a9 a1 a7
a8 a0

Figure 6: In this allocation instance (where the boxed agents form a valid
allocation), the inner threshold θ = (4, 2, 4) corresponds to the rank of the
highest red-shaded tier in each column; all allocated agents occur at that
priority level or higher. The lowest red-shaded tier corresponds to the outer
threshold θ = (5, 4, 5); the three unallocated agents (a0, a7 and a9) are at or
below this level in each category. Any mapping from the categories to one of
the red-shaded tiers gives a valid threshold function.

Auditing Allocated Agents by Optimizing Inner Thresholds: One way to audit a valid allocation
is by the quality of allocated agents. Allocations with large inner threshold are the “most” respectful of
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priorities in the sense that each category allocates only to agents in high priority tiers. There are two
natural ways to quantify this: we can minimize the sum of ranks of allocated agents, or we can minimize
the maximum rank of an allocated agent. Both of these objectives are handled by our approach by carefully
choosing the valid perturbation δ.

Proposition 5. Given an instance I, define perturbations δa,c =
rc(a)

2|C| |A|2 . Then any (integral) allocation x

returned by (Pδ) is a valid allocation that minimizes the sum of allocated agents’ ranks.

Proof. To see that x is a valid allocation, it suffices (by Theorem 1) to argue that δ is a valid perturbation.
By construction, each δa,c is positive, and δ is consistent as rc(a) ≤ rc(a

′) if and only if a ⪰c a
′. Finally, to

see that δA has small effect, note that each rc(a) ≤ |A|, and hence∑
a∈A

∑
c∈C

δa,c ≤
∑
a∈A

∑
c∈C

1
2|C| |A| =

1
2 .

To conclude that x minimizes the sum of allocated agents’ ranks (among all valid allocations), we consider
the objective Vδ(x). We have

Vδ(x) = V (x)−
∑
a∈A

∑
c∈C

δa,c · xa,c = V (x)− 1
2|C| |A|2 ·

( ∑
a∈A

∑
c∈C

rc(a) · xa,c

)
.

V (x) is the same for all valid (and thus maximal) allocations. The parenthesized expression is exactly the
sum of allocated agents’ ranks. Thus, allocations returned by (Pδ) minimize this sum.

Proposition 6. Given an instance I, define perturbations δa,c = 1
2|C| |A| ·

(
1

|A|+1

)|A|−rc(a)

. Then any

(integral) allocation x returned by (Pδ) is a valid allocation that minimizes the maximum rank over all
allocated agents (i.e., maximum inner threshold over all categories).

Proof. To see that x is a valid allocation, it suffices (by Theorem 1) to argue that δ is a valid perturbation.
As before, by construction, each δa,c is positive, and δ is consistent as rc(a) ≤ rc(a

′) if and only if a ⪰c a′,
and δa,c is an increasing function in rc(a). Finally, δ has small effect since each rc(a) ≤ |A|, and so we have

that
(

1
|A|+1

)|A|−rc(a) ≤ 1. Thus, ∑
a∈A

∑
c∈C

δa,c ≤
∑
a∈A

∑
c∈C

1
2|C| |A| =

1
2 .

Let R(x) = max
(a,c):xa,c=1

{
rc(a)

}
be the maximum rank over all allocated agents. To conclude that x minimizes

R(x) (among all valid allocations), consider the objective Vδ(x). We have

Vδ(x) = V (x)−
∑
a∈A

∑
c∈C

δa,c · xa,c = V (x)− 1

2|C| |A| · (|A|+ 1)|A| ·
∑

(a,c):xa,c=1

(|A|+ 1)rc(a).

By the definition of R(x), the sum in the last expression falls in the interval
[
(|A|+1)R(x), |A|·(|A|+1)R(x)

]
.

Since these intervals are non-overlapping, choosing an integral allocation maximizing Vδ is equivalent to
minimizing this sum, and hence minimizing R(x).

Auditing Unallocated Agents by Optimizing Outer Thresholds: Suppose instead that from the
perspective of categories, what matters is that highly-ranked agents are allocated from some category. A
natural way to audit this is via the outer threshold, which marks the rank of the first unallocated agent in
a category; one may thus want to select valid allocations that have larger values for these outer thresholds.
Again, there are two natural realizations of this objective: we can maximize the minimum outer threshold,
or the sum of the outer thresholds over categories. Unlike the inner threshold, however, optimizing both of
these objectives is NP-hard.
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Proposition 7. Given an instance I, selecting a valid allocation φ∗ that maximizes the minimum over all
categories of the outer threshold is NP-hard.

Proof. This result follows from an X3C reduction that is similar to that from Proposition 4. In particular,
when 4(m− n) ≥ 3n+1, the same reduction works, as a is serviceable in the reduced instance if and only if
the outer threshold of all categories is at least 3n+ 1.

If 4(m−n) < 3n+1, we need to add more filler agents to the α categories to push the tier of the last f agents
past the a agent in category β. In category αi, we add agents gi,1, . . . , gi,(7n−4m+1), each in a separate rank
tier above f1. We also increase the category’s quota to 7n − 4m + 5. Again, we have that a is serviceable
in the reduced instance (so the X3C instance has a partition by a straightforward modification of the proof
of Proposition 4 to account for the gi,j agents) if and only if the outer threshold of all categories is at least
3n+ 1.

Proposition 8. Given an instance I, selecting a valid allocation φ∗ that maximizes the sum over all cate-
gories of the outer threshold is NP-hard.

Proof. This result again follows from an X3C reduction that is almost identical to that from Proposition 4.
To the reduced instance, we add 4m additional filler agents {g1, . . . , g4m} and an additional category γ with
quota 4m and all of these g agents in its first priority tier. In addition, we add all of these g agents below a
in category β, each in a separate priority tier.

Note that if a remains unallocated, then the maximum possible sum of outer thresholds is (4m − 4n + 5) ·
m + 3n + 1, where the first term comes from the m set categories, the second term comes from β, and
the third term from γ. On the other hand, if a is allocated, then the sum of outer thresholds is at least
(4m− 4n+ 1) ·m+ (3n+ 1+ 4m) + 1. Thus, a is serviceable in the reduced instance (so the X3C instance
has a partition by the proof of Proposition 4) if and only if the sum over categories of the outer thresholds
is at least (4m− 4n+ 1) ·m+ (3n+ 1 + 4m) + 1.

More surprisingly, there is a sense in which the second objective is strictly harder: suppose we de-reserve
units from the categories by removing the quota constraints, and instead impose a single global constraint
that the total number of allocations across all categories is at most q. Now, maximizing the first objective
becomes trivial (one can iteratively assign to the highest-ranked unallocated agent over all categories), but
the objective of maximizing the sum of outer thresholds remains hard.

Proposition 9. Given an instance I, selecting an allocation φ∗ giving to at most q agents that maximizes
the sum over all categories of the outer threshold is NP-hard.

Proof. We perform a reduction from Clique. Given an undirected graph G and clique size k as input,
construct an allocation instance IG with A = V , q = k, and a category ce for each edge e ∈ E whose only
two eligible agents are the endpoints of e (in the same priority tier). Now G contains a k-clique if and only
if the sum of outer thresholds in IG equals

(
k
2

)
+ |E|.

5 Online Priority-Respecting Allocation

The second broad application we consider is allocating resources to agents who arrive online, while still
respecting priority and quota considerations. Our results here again critically depend on the equivalence
between valid matchings and perturbed maximum-weight matchings, demonstrating the importance of our
characterization in Theorem 1.

5.1 Online Allocation with Priorities: Preliminaries

Our model is as follows: Agents arrive one at a time over T rounds t = 1, . . . , T ; we refer to the agent arriving
in round t simply as agent t. Each arriving agent has an observable type θ[t] ∈ Θ; here, Θ is a discrete and
typically small set. For example, each category could give each agent a priority level in {1, 2, . . . , ℓ, ineligible}
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for some small ℓ; in this case, an agent’s type is their vector of priority levels. Categories now have eligibility
criteria and priorities over these types; that is, the eligible set is Ec ⊆ Θ, and the total pre-order ⪯c is
defined over Ec. By distinguishing between agents and their types, our model allows us to separate out two
parameters: the number of types (which is typically small), and the number of agents (which may be large).
Indeed, our main goal is to achieve online algorithms whose costs can be bounded in terms of the “small”
parameters (number of types and number of categories), independent of the total number of agents T .

In each round t, the type θ[t] of the arriving agent is drawn randomly from some known probability distri-
bution; for simplicity3, we assume that θ[t] = θ i.i.d. with probability pθ. We use p = (pθ)θ∈Θ for the vector
of all these probabilities. Under this arrival model, the number of agents (Nθ)θ∈Θ of each type on a given
sample path follows a Multinomial(T,p) distribution.

After observing the type θ[t] of agent t, the principal must irrevocably decide to either allocate a reserved unit
from one of the categories to agent t or leave t unallocated forever. Given the online nature of the problem
and uncertainty due to randomness, it is impossible to satisfy all of the axioms we considered earlier; Pareto
efficiency stands in obvious conflict with respecting priorities. To see this, notice that when an algorithm
early on considers allocating to an agent of a particular type, there are two possible extreme scenarios that
could occur with positive probability: if all subsequent agents have lower priority, then not allocating to the
agent may result in a drastic loss in efficiency. Conversely, if all subsequent agents have higher priority, then
allocating to the agent would deprive one of the future agents of an allocation, violating priorities. Thus, it
is important to decide how to quantitatively trade off the violated axioms.

One natural option is to treat the priorities as a hard constraint, and maximize the expected number of
allocations subject to this constraint. Doing so leads to a straightforward MDP; unfortunately, treating
priorities as a hard constraint can lead to very poor performance.

Proposition 10. Even with a single category and three priority levels (types), there exist instances in
which any online allocation algorithm guaranteeing no priority violations must incur Ω(T ) efficiency loss in
hindsight, with all but at most exponentially small probability.

Proof. Proposition 10 We consider a family of allocation instances parameterized by T . There is a single
category with quota q = T

2 and three eligible types: a ≻ b ≻ c with pa = pb = pc =
1
3 .

Consider the arrival of an agent of type b “early in the sequence”. Although it is almost certain that the
hindsight-optimal allocation will accept roughly half of the arriving type-b agents, an online algorithm must
reject this agent. To ensure that the hindsight allocation always respects priorities, the algorithm must guard
against a future (which occurs with positive probability) in which all remaining agents are of type a. The
algorithm can therefore never exhaust the quota in a way that would leave some of these agents unallocated
and envious. By this reasoning, the algorithm must continue to reject all arriving agents of types b and c
until the (random) stopping time τ at which

T
2 −

τ∑
t=1

1
(
θt = a

)
≥ T − τ.

Here, the left-hand side is the number of remaining units that can be allocated, and the right-hand side is
the number of agents to arrive after time τ . We can rearrange this inequality to get

τ∑
t=1

1
(
θt ̸= a

)
≥ T

2 .

If at most 3T
8 agents among the first 7T

8 arrivals have type a, then this inequality holds for τ = 7T
8 , so

applying Hoeffding’s Inequality, we obtain that

P[τ ≤ 7T
8 ] ≥ 1− P

[
Binom( 7T8 , 1

3 ) >
3T
8

]
≥ 1− exp

(−T
63

)
.

3Under suitable technical assumptions, our results can be generalized to non-stationary arrival probabilities. However, the
added notational overhead outweighs the mild added generalization.
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After arrival τ , an algorithm can begin to accept agents of type b (and possibly c). However, if the algorithm
has rejected any agents of type b before time τ , it cannot accept any type-c agents. Since all agents of types
other than a must have been rejected before time τ , the event that no type-b agents have been rejected
before time τ coincides with the event that no such agents arrived. Because τ ≥ T

2 , the probability of no

type-b rejections is therefore at most ( 23 )
T/2. By a union bound, with probability at least

1− exp
(−T

63

)
−

(
2
3

)−T/2
= 1− exp(−Ω(T )),

the algorithm rejects all type-c agents arriving after time τ ≤ 7T
8 . Again by Hoeffding’s Inequality, with

probability at least 1− exp(−Ω(T )), there are at least
(

1
24 − ϵ

)
·T such agents (for any constant ϵ < 1

24 , e.g.,
ϵ = 1

100 ), resulting in Ω(T ) loss in efficiency with all but exponentially small probability.

In light of Proposition 10, it is necessary to relax the [PR] axiom to achieve meaningful guarantees. We
therefore consider the tradeoff between the following two metrics:

Efficiency loss ∆e: The difference between the maximum cardinality of any allocation and the
number of allocations made by the algorithm.
Priority loss ∆p: The number of unallocated agents with some type θ eligible in some category c
that allocated one or more slots to lower-priority agents (i.e., with type θ′ ≺c θ).

We henceforth refer to unallocated agents contributing to the priority loss as priority violations. Note that
both ∆e and ∆p are random variables, computed in hindsight on each sample path. Moreover, the optimal
offline (i.e., hindsight) allocation simultaneously makes both losses 0. Our goal is to understand how online
algorithms can trade off between these losses.

5.2 Efficiency-Priority Tradeoffs for Online Allocation

We now present our main result in this section: we design an online allocation policy that guarantees
that the sum of the efficiency loss and priority loss is independent of T and q (i.e., of the number of
agents/allocations). Formally, we have the following guarantee.

Theorem 5. Let pmin = min
θ∈Θ

pθ. For any valid δ, the allocation returned by the Online Priority-

Respecting Allocation with Restrictions Policy (Algorithm 3) satisfies

E[∆e +∆p] ≤ |Θ|5(|C|+1)4

p4
min

.

The dependence of this bound on each of these three parameters (Θ, C, and pmin) is unavoidable. Note that
given any problem instance, we can duplicate each category with distinct types in each copy, leading to at
least linear dependence on |C| and |Θ|. In addition, note that the problem of selecting the top k elements
of a random stream is a special case of our setting. For this problem, it is known that linear dependence
on 1

pmin
is unavoidable (see Figure 1 in Arlotto and Gurvich [2019]). Getting the optimal dependence on

|Θ|, pmin and |C| is left open for future work.

The central idea behind our algorithm is to solve the perturbed LP on the expected number of future
arrivals and use the solution to select an action that is least likely to cause priority violations or efficiency
loss. The guarantee follows by using the compensated coupling technique of Vera and Banerjee [2021] (see
also Banerjee and Freund [2020]), which essentially allows us to leverage smoothness properties of linear
programs to obtain sample-path regret bounds. Our characterization in Theorem 1 is essential for using this
approach. We note also that since our objective (in particular, ∆p) has a Lipschitz constant that grows with
T , we cannot directly adopt existing uniform-regret results Banerjee and Freund [2020]; rather, we must
carefully use restrictions (Definition 4) to control the Lipschitz constant and obtain our results.

Our algorithm uses as a subroutine the following Interim LP relaxation Pδ

(
t,N[t], E [t],q[t]

)
:
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max
∑
c∈C

∑
θ∈Θ

xθ,c[t] · (1− δθ,c)

subject to xθ,⊥[t] +
∑
c∈C

xθ,c[t] = Nθ[t] for all θ ∈ Θ∑
θ∈Θ

xθ,c[t] ≤ qc[t] for all c ∈ C

xθ,c[t] = 0 for all c ∈ C, θ ̸∈ Ec[t]
xθ,c[t] ≥ 0 for all c ∈ C ∪ {⊥}, θ ∈ Θ

The interim LP can be viewed as a proxy solution to the perturbed LP (Pδ) in Theorem 1, given past
allocation decisions. t indexes the current arrival, the parameters N[t] = (Nθ[t])θ∈Θ represent the number
of future arrivals of each type θ ∈ Θ over rounds t, . . . , T , the parameters E [t] = (Ec[t])c∈C represent the
restricted eligibility sets (see Algorithm 3) at time t, and the parameters q[t] = (qc[t])c∈C represent the
available quotas at the start of round t. The decision variables x[t] = (xθ,c[t])c∈C∪{⊥},θ∈Θ represent the
number of agents of type θ who will be allocated in category c (or remain unallocated, for c =⊥) from
among the arrivals t, . . . , T . The objective function, as before, accrues one unit for each allocated agent
minus some chosen perturbation δθ,c. The first constraint accounts for future arrivals of type θ; the second
ensures that the combination of past and future allocations does not exceed the reserved quota for any
category; the third ensures that the solution respects eligibility. Note that the interim LP does not ensure
respect for priorities, as it does not account for which agent types were allocated in the past. In fact, as
shown in Proposition 4, it is NP-hard to compute whether there is a valid allocation that includes these
agents. Given this LP family, we are ready to state our algorithm.

Algorithm 3 Online Priority-Respecting Allocation with Restrictions

Input: Allocation Instance
(
C,Θ,q, E , (⪯c)c∈C ,p

)
, Online Arrivals (θ[t])t∈[T ]

Output: Allocations (y[t])t∈[T ], y[t] ∈ C ∪ {⊥}
1: Select a valid perturbation δ; Initialize E [1]← E , q[1]← q
2: for each t = 1, . . . , T do

3: x∗[t]← solution to Pδ

(
t,
(
1(θ = θ[t]) + (T − t) · pθ

)
θ∈Θ

, E [t],q[t]
)

4: y[t]← argmax
c∈C∪{⊥}

(
x∗
θ[t],c[t]

)
, qc[t+ 1]← qc[t]− 1(y[t] = c) for each c ∈ C

5: if y[t] =⊥ then
6: Ec[t+ 1]← Ec[t] \

(
{θ[t]} ∪ {θ ∈ Θ: θ ≺c θ[t]}

)
for each c ∈ C

7: else
8: Ec[t+ 1]← Ec[t] for each c ∈ C

For each arriving agent t, the algorithm solves the LP using its current quotas q[t] and eligible sets E [t], the
current arrival θ[t], and the expected number of future arrivals of each type. It allocates to agent t through
a category (including the “no allocation” category ⊥) maximizing the expected allocation under the optimal
LP solution. When an agent is not allocated, the algorithm takes a restriction of the allocation instance to
prevent future priority violations.

Proof of Theorem 5. To bound the expected loss of Algorithm 3, we use a variant of the compensated
coupling argument of Vera and Banerjee [2021]. In each round t, we consider two random variables, with
the randomness taken over the future arrivals θ[t+ 1], . . . , θ[T ].
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— ∆e[t] represents the efficiency loss due to the algorithm’s decision at time t. Using our notation,

∆e[t] = P0

(
t,N[t], E [t],q[t]

)
︸ ︷︷ ︸

Optimal offline allocation given
decisions made before round t

−
(
1(y[t] ̸=⊥) + P0

(
t+ 1,N[t+ 1], E [t+ 1],q[t+ 1]

)
︸ ︷︷ ︸
Optimal offline allocation given
decisions made through round t

)
.

— ∆p[t] represents the priority loss due to the algorithm’s decision at time t, i.e., the number of additional
unallocated and envious agents that arise as a result of the allocation of θ[t].

We denote the value of the decision variables at an optimum of the offline LP at time t by x∗[t]. We
separately reason about these two sources of loss in two cases: when agent t is allocated through some
category, vs. when t remains unallocated.

If agent t is allocated, then y[t] = c for some c ∈ C. If x∗
θ[t],c[t] > 0, then the optimal solution along this

sample path allocates to an agent of type θ[t] in category c. Thus, the allocation to agent t has not deviated
from this optimal allocation, so no loss needs to be compensated for. If x∗

θ[t],c[t] = 0, meaning that the

optimal solution does not allocate to any agents of type θ[t] from time t onwards, the algorithm’s choice
of allocation may reduce the efficiency by at most one. This is because the optimal solution can introduce
at most one augmenting path into the bipartite allocation graph. In addition to the efficiency loss, the
allocation to t may prevent some agents with higher priority in c from receiving an allocation, leading to
priority violations. A crude upper bound on the increase in the number of priority violations is T − t, i.e.,
all remaining agents. Hence, we obtain the upper bound ∆e[t] + ∆p[t] ≤ 1(x∗

θ[t],c[t] = 0) · (1 + T − t).

Next, we consider the case in which agent θ[t] remains unallocated, so y[t] =⊥. Again, if x∗
θ[t],⊥[t] > 0, i.e.,

the optimum solution also leaves at least one agent of type θ[t] unallocated, the failure to allocate to agent t
does not cause any loss in efficiency or priority. Therefore, we assume that x∗

θ[t],⊥[t] = 0. The non-allocation

to θ[t] causes the algorithm to restrict the allocation instance: in the future, it will never be able to allocate
to agents whose types have lower priority than θ[t]. Even so, the efficiency loss can be safely upper-bounded
by T − t + 1, i.e., all agents after and including agent θ[t]. In addition to the efficiency loss, the failure to
allocate to agent t may lead to a priority violation at the expense of t; however, this can be the only resulting
priority violation. Thus, we obtain the upper bound ∆e[t] + ∆p[t] ≤ 1(x∗

θ[t],⊥[t] = 0) · (T − t+ 1 + 1).

Combining the above, we get that the sum of the losses in round t can be upper-bounded as

∆e[t] + ∆p[t] ≤ 1(x∗
θ[t],y[t][t] = 0) · (T − t+ 2),

and summing over all rounds, and taking expectations, we get

E[∆e +∆p] ≤
T∑

t=1

P[x∗
θ[t],y[t][t] = 0] · (T − t+ 2). (2)

Next, we establish a bound on the probability P[x∗
θ[t],y[t][t] = 0]. Recall that in each round, y[t] is selected

as an argmax over c ∈ C ∪ {⊥} of xθ,c[t]. That is, y[t] is a most frequent assignment of the future arriving
agents of type θ[t] when the expected number of agents of each type arrive. In expectation, the number of

arrivals of type θ[t] in rounds t, . . . , T is 1 + (T − t) · pθ[t]. Thus, xθ[t],y[t] ≥
1+(T−t)pθ[t]

|C|+1 ; this implies a lower

bound on the infinity norm of the difference between the LP solution x[t] and the optimal offline solution

x∗[t], i.e.,
∥∥x[t]− x∗[t]

∥∥
∞ ≥

1+(T−t)·pθ[t]

|C|+1 .

On the other hand, using the (1,∞)-Lipschitz property of maximum-weight matchings with respect to
budgets [Vera and Banerjee, 2021, Proposition 4], we have that∥∥x∗[t]− x[t]

∥∥
∞ ≤

∥∥N[t+ 1]− (T − t− 1) · p
∥∥
1
.

Thus, the (bad) event x∗
y[t],θ[t][t] = 0 implies that

∥∥N[t + 1] − (T − t − 1) · p
∥∥
1
≥ 1+(T−t)·pθ[t]

|C|+1 , i.e., that

the actual type counts differ a lot from their expectations. A large deviation of the ∥ · ∥1-norm implies that
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at least one coordinate must differ by at least the average, so this event implies that the actual number of

arrivals for at least one type differs from its expectation by at least an additive
1+(T−t)·pθ[t]

|Θ|·(|C|+1) . Because arrival

counts for any type θ follow the distribution Nθ[t] ∼ Binomial(T − t, pθ), the Hoeffding bound gives us that
the probability of a large deviation for any one type θ is

P
[∣∣Nθ[t+ 1]− E

[
Nθ[t+ 1]

]∣∣ ≥ 1+(T−t)·pθ

|Θ|·(|C|+1)

]
≤ 2 · exp

(
−2(T−t)·p2

θ

|Θ|2·(|C|+1)2

)
≤ 2e−κ(T−t),

where κ =
2p2

min

|Θ|2(|C|+1)2 ≤
1
2 . Taking a union bound over the |Θ| types θ and substituting the resulting upper

bound into (2), the expected loss is upper-bounded by

E[∆e +∆p] ≤
T∑

t=1

(T − t+ 2) · 2|Θ| · e−κ·(T−t)

≤ 2|Θ| ·
∫ ∞

0

(z + 2) · e−κz dz = |Θ| · 4κ+2
κ2

κ≤ 1
2

≤ |Θ| · 4
κ2 = |Θ|5(|C|+1)4

pmin
4 .

6 Conclusion

We studied allocation settings where units of some public resource are to be divided between multiple
categories, each with a quota of items, and a priority ordering over eligible agents. The goal is to find a
valid allocation — one which respects the quotas, eligibility, and priority requirements, while still being
Pareto optimal. Our main result demonstrates a bijection between valid integral allocations and maximum-
weight matchings under a set of valid weights. This approach allowed us to efficiently locate and select valid
allocations, despite the set of valid allocations being non-convex. On the other hand, our hardness results
demonstrate the strange geometry of this set, due to which optimizing over it remains challenging. We hope
our work can help guide the use of priorities and quotas in a wide variety of settings. Extending our approach
to models involving two-sided preferences and/or complementarities provide interesting avenues for future
research.
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A Scarf’s Lemma and Stable Matching

Here, we compare the priority-respecting allocations problem and the stable matching problem through the
lens of Scarf’s lemma. To begin, we recall Scarf’s Lemma, following the treatment of Nguyen and Vohra
[2022].

Scarf’s lemma considers an allocation setting with n agents and m coalitions; both of these descriptors
apply rather abstractly, as our examples will illustrate. In this setting, coalitions comprise agents and the
principal must decide how to allocate coalitions. There are budgetary constraints that ensure that no agent
is over-allocated and agents may express preferences over the coalitions to which they belong. Formally, we
have:

— A matrix A ∈ Rn×m
+ has a row for each agent and a columns for each coalition.We interpret entry Aij

as a cost to agent i if (one unit of) coalition j is allocated. We assume that each row includes at least
one positive entry.

— A vector q ∈ Rn
+ denotes the budget of each agent.

— Each agent i has a total preference order ⪰i over its coalitions {j ∈ [m] : Aij > 0}.

— A vector x ∈ Rm
+ stipulates to what extent each coalition is realized.

Thus, the principal must select x subject to the budgetary constraints Ax ≤ q. Within this set of feasible
x, we wish to further choose coalitions that enforce some notion of stability with respect to the agent
preferences. For this, we introduce the notion of the domination of a coalition.

Definition 7. Given an instance
(
A,q, (⪰i)i∈[n]

)
, an allocation x ≥ 0 satisfying Ax ≤ q dominates coalition

j ∈ [m] if there is some fully-allocated agent i for which every allocated coalition to which i belongs is weakly
preferred by i to j.

More formally, there is i ∈ [n] such that
∑m

k=1 Aikxk = qi and for each j′ ∈ [m],

Aij′ > 0 and xj′ > 0 =⇒ j′ ⪰i j.

Domination expresses an inability to adjust x in a way that assigns more weight to coalition j without
upsetting some agent i. Simply increasing xj would violate i’s budgetary constraint, and any shift in weight
from any other coalition j′ to which i belongs would come from a coalition preferable to j. Through this
interpretation, if an allocation were to dominate all coalitions, it would exhibit a notion of stability ; any
adjustment of the coalition allocations would be either inefficient or disagreeable to some agent. The ensured
existence of such stable allocations is the content of Scarf’s Lemma.

Proposition 11 (Scarf [1967], Theorem 1). Given any allocation instance
(
A,q, (⪰i)i∈[n]

)
, there is an

extreme point of {x : Ax ≤ q} that dominates every coalition.

Scarf’s Lemma can be proven via a reduction to the existence of Nash Equilibria in two-person games. While
the statement of this result is clean, allowing it to be specialized to many problems (as we discuss below),
there is no assurance that this dominating extreme point can be easily computed. In fact, Kintali [2008]
showed that a computational version of Scarf’s Lemma is complete for the PPAD class. This implies that
there is no polynomial-time algorithm to locate these extreme points unless PPAD ⊆ P. Despite this, there
are many special cases of Scarf’s Lemma that admit polynomial algorithms.

One special case of Scarf’s Lemma is the stable matching problem; it can be used to recover the result of
Gale and Shapley [1962] that a stable matching exists in every instance. Using the context of n residents
being matched to n hospitals, we take the set of agents to be the union of the residents and hospitals.
The coalitions consist of each (resident, hospital) pair, and A is the {0, 1} incidence matrix. The budget
vector q ∈ R2n

+ is the all-ones vector, which ensures that each agent is matched at most once. The agent
rankings (⪰i) order an agents incident pairs corresponding to their preference list. In this construction, an
undominated coalition corresponds to an instability. Note that the Birkhoff-von Neumann theorem ensures
the integrality of the extreme points.
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The priority-respecting allocation problem can also be interpreted as a special case of Scarf’s lemma. How-
ever, the construction is less straightforward, as we must account for the lack of preferences of the agents.
Here, the set of agents consists of all of the categories along with a copy of each of the agent for each possible
ordering of their eligible categories. The set of coalitions consists of all eligible (agent, category) pairs, and
A is again a {0, 1} incidence matrix. The budget of each category is its quota, and the budget of each agent
is 1. The preference order of a category c is any linear extension of ⪰c. The preference order of each agent
row corresponds to its ordering over its eligible categories.

A.1 LP Perturbations and Stable Matchings.

One problem with using Scarf’s Lemma is that while it guarantees the existence of a dominating solution,
it does not give an efficient algorithm for finding it. Apart from priority-respecting allocation, the other
setting where the dominating solution was known to be efficiently computable was for stable matchings. The
underlying reason behind the existence of an efficient algorithm in the two settings, however, appears to be
very different. On one hand, stable matchings are known to form a convex set (and indeed, are realized as
corner points of a natural modification of the matching LP Vande Vate [1989]), while as we show in Fig. 2,
this is not the case for priority-respecting matchings. On the other hand, we show that the perturbation
techniques we develop for locating priority-respecting allocations does not work for stable matchings.

A näıve way to locate stable matchings via LPs is to first compute a stable matching (which can be done
efficiently via the Deferred-Acceptance procedure of Gale and Shapley [1962]), and then design edge weights
to recover the same matching as a maximum-weight matching. More surprisingly, the work of Vande
Vate [Vande Vate, 1989] shows that one can modify the matching polytope by adding additional linear
constraints to get an LP whose corner points exactly correspond to all the stable matchings, and one can use
the corresponding optimal dual variables to get perturbed objectives. The problem with these procedures,
however, is that they compute perturbations that are global, i.e., based on the entire instance. This is in
contrast to our technique for finding priority-respecting allocations, which is based on local perturbations:
the objective coefficient on edges xmw are functions only of the rank of m on w’s preference list and the rank
of w on m’s preference list.

Thus, a more refined question is if given a stable matching instance with n men and n women, one can find
a perturbation function F : [n] × [n] → R such that the resulting matching M that maximizes VF (M) =∑

(m,w)∈M F (rw(m), rm(w)) is necessarily stable. Unfortunately, we can answer this question in the negative.

Proposition 12. For n ≥ 6, for any local perturbation function F : [n]× [n]→ R, there exist instances such
that any matching M maximizing VF (M) =

∑
(m,w)∈M F (rw(m), rm(w)) is unstable.

Proof. We consider two stable matching instances with n = 6. In both instances, the women are indexed by
Roman letters {a, b, c, d, e, f} and the men are indexed by Greek letters {α, β, γ, δ, ϵ, ζ}. The first instance
has the following preference lists:

a b c d e f
α β γ α α α
∗ ∗ ∗ δ β ϵ
∗ ∗ ∗ ζ ϵ β
∗ ∗ ∗ ∗ δ ζ
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

α β γ δ ϵ ζ
a b c a a a
∗ ∗ ∗ e b f
∗ ∗ ∗ b e d
∗ ∗ ∗ c f ∗
∗ ∗ ∗ d ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

Here, the ∗ elements can be assigned arbitrarily to complete the matching instance. Note that in this
instance, there is a unique stable matching, M = {(a, α), (b, β), (c, γ), (d, δ), (e, ϵ), (f, ζ)}. An alternate (non-
stable) matching is M ′ = {(a, α), (b, β), (c, γ).(d, ζ), (e, δ), (f, ϵ)}; note the presence of instability (e, ϵ). For
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our function F to assign a higher value to matching M than M ′, we must have

VF (M) = F (1, 1) + F (1, 1) + F (1, 1) + F (2, 5) + F (3, 3) + F (4, 2)

>VF (M
′) = F (1, 1) + F (1, 1) + F (1, 1) + F (3, 3) + F (4, 2) + F (2, 4),

which simplifies to the condition F (2, 5) < F (2, 4).

We similarly consider our second stable matching instance.

a b c d e f
α β γ α α α
∗ ∗ ∗ δ β ϵ
∗ ∗ ∗ ζ ϵ β
∗ ∗ ∗ ∗ δ ζ
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

α β γ δ ϵ ζ
a b c a a a
∗ ∗ ∗ e b f
∗ ∗ ∗ b e d
∗ ∗ ∗ d c ∗
∗ ∗ ∗ ∗ f ∗
∗ ∗ ∗ ∗ ∗ ∗

In this instance, M = {(a, α), (b, β), (c, γ), (d, δ), (e, ϵ), (f, ζ)} is again the unique stable matching. The
alternate matching M ′ = {(a, α), (b, β), (c, γ).(d, ζ), (e, δ), (f, ϵ)} is again unstable; note the presence of
instability (e, ϵ). For our function F to assign a higher value to matching M than M ′, we must have

VF (M) = F (1, 1) + F (1, 1) + F (1, 1) + F (2, 4) + F (3, 3) + F (4, 2)

>VF (M
′) = F (1, 1) + F (1, 1) + F (1, 1) + F (3, 3) + F (4, 2) + F (2, 5),

which simplifies to the condition F (2, 4) < F (2, 5). Our two derived inequalities cannot be simultaneously
satisfied. Hence, such a local perturbation function F cannot exist.
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