Two-Stage Rollout Designs with Clustering for Causal Inference under Network Interference
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The Problem

Research Objective

= Company runs experiment to estimate value of ad campaign
= Total Treatment Effect (TTE): average change in sales when everyone versus no one sees the ad
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= Network Interference: Word-of-mouth spreads ad’s message beyond direct ad viewers

= [nterference violates SUTVA, biasing classic estimators

Formalizing the Problem

Develop a design/estimator pair that:

= Improves performance (over [1]) when 8 > 1 and treatment budget p is small
= Does not require full knowledge of the interference network, but can use network information to
improve performance

Two-Stage Clustered Rollout Design

Population [n] :={1,...,n}

Treatments z € {0,1}"
Outcomes Y;(z): {0,1}" - R

Neighborhood Interference:

Yi(z) depends on treatments of ¢'s
neighbors N; w.r.t. interference graph,
d = max; |N|

3-Order Interactions: Only small subsets of treated neighbors affect i's outcome

Yi(z) = Z ci,gsz = TTE:%S: Y s, Sf ={SCN, : |§] <5}
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Past Approach [1]: Bernoulli Rollout Design

ldea: Artificially “increase” treatment budget p by running experiment on subpopulation, treating a

greater proportion ¢ > p of units
Stage 1: Partition network into n. clusters. Include clusters in experimental units U with probabilityg

Stage 2: Do rollout experiment on U with max treatment fraction q
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2-Stage Estimator:
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Simulation Setup

Network:

= Dataset [3] of n = 19, 828 Amazon DVD product listings
= Directed edges from each DVD to five frequent co-purchases (1 < |N;| < 247)
= Each DVD has subset of ~ 13 out of 13,591 category labels (genre, actors, setting, etc.)

Potential Outcomes: Model from [4], generalized to §-order interactions, incorporates homophily &
degree correlated outcomes

Experimental Results
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Performance of the Two-Stage Estimator

= F(p) =E, [% Y Yi(z)] s 8-degree polynomial, note TTE = F(1)— F(0)

= Staggered rollout design: in each time step t, tpn/ S individuals randomly assigned to treatment
= This gives 8+1 samples of F'; we can estimate TTE with Lagrange interpolation
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v/ |s unbiased .

v/ Does not require knowledge of the — F() ;-
interference network

v/ Outperforms baseline estimators

X Has high variance when 8 > 1, p
small due to extrapolation
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Bias bounded by the cut effect, the total impact of edges crossing between clusters:
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[1(S) is set of clusters containing units from &

= Cut effectis 0 when 3 =1 or there are no crossing edges

Variance bounded above by:
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- Covariate imbalance Crossing edges
Goes away it g=p

Extrapolation,
Goes away if g=1

where \/ar(ZW) Is empirical variance of average treatment effect of clusters and Y.« bound on outcomes

Insights

= Cut effect tells us to reduce bias by reducing number of cut edges

- \7a\r(Lr) tells us to reduce variance by increasing covariate balance

= |[f there Is homophily, there may be a tension in these two clustering objectives
= Clustering on edges may reduce bias but increase variance

Comparing performance of different estimators (3 = 3):

Bias and Standard Deviation MSE
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= Thresholded DM and Hajek the only estimators requiring full network knowledge
= The estimator from [1] is the only unbiased estimator

Comparing performance of 2-stage approach under different levels of network knowledge:
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= No knowledge means 2-Stage design with clusters of size 1

Insights:

= Clustering with full network knowledge achieves best overall performance
= ?-stage approach may still reduce MSE (versus single-stage) even without network knowledge

= Clustering to target covariate balance may increase bias and reduce variance
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