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Abstract

Estimating causal effects under interference
is pertinent to many real-world settings. Re-
cent work with low-order potential outcomes
models uses a rollout design to obtain un-
biased estimators that require no interfer-
ence network information. However, the re-
quired extrapolation can lead to prohibitively
high variance. To address this, we propose
a two-stage experiment that selects a sub-
population in the first stage and restricts
treatment rollout to this sub-population in
the second stage. We explore the role of clus-
tering in the first stage by analyzing the bias
and variance of a polynomial interpolation-
style estimator under this experimental de-
sign. Bias increases with the number of edges
cut in the clustering of the interference net-
work, but variance depends on qualities of
the clustering that relate to homophily and
covariate balance. There is a tension between
clustering objectives that minimize the num-
ber of cut edges versus those that maximize
covariate balance across clusters. Through
simulations, we explore a bias-variance trade-
off and compare the performance of the esti-
mator under different clustering strategies.

1 Introduction

The stable unit treatment value assumption (SUTVA)
is critical for many classic causal inference methods,
but is violated in settings with interference, where the
outcome of an individual can be affected by the treat-
ment assignment of another. Interference introduces
bias into estimators, potentially leading to inaccurate
conclusions about causal effects when ignored (Sobel,
2006). Many domains experience interference. In eval-
uating the effect of a public health intervention such
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as a vaccine, peer effects from herd immunity play a
role (Hudgens and Halloran, 2008). In evaluating the
effect of a new feature on a social media platform, a
user’s engagement is affected by the behaviors of their
social connections, whether they are directly exposed
to the new feature or not (Biswas and Airoldi, 2018;
Aral and Walker, 2012).

We exploit both a rich two-stage randomized experi-
mental design and a flexible potential outcomes model
to estimate the total treatment effect (TTE), the dif-
ference in average outcomes of the population when
everyone is treated versus untreated. The TTE esti-
mand, sometimes called the global average treatment
effect, is a natural choice in applications where the
decision-maker needs to decide between adopting the
new intervention for everyone or sticking with the sta-
tus quo, such as a tech company choosing a single user-
feed content recommendation algorithm for their social
media platform. The class of experimental designs we
consider in this paper are called staggered rollout de-
signs, where treatment is assigned over different time
periods to increasing subsets of participants until it
has been rolled out to all subjects designated for treat-
ment. This style of experiment is common on online
platforms (Xu et al., 2018) to mitigate the possible,
unknown risks related to introducing a new feature,
and in medicine (Brown and Lilford, 2006), where for
logistical or financial reasons it may be impossible to
deliver treatment to all participants at once.

Related Work. Many prior approaches for causal
inference under interference consider cluster random-
ized designs (Sobel, 2006; Hudgens and Halloran, 2008;
Liu and Hudgens, 2014; Ugander et al., 2013; Gui
et al., 2015; Eckles et al., 2017; Auerbach and Tabord-
Meehan, 2021; Brennan et al., 2022; Ugander and Yin,
2023). These works exploit structural assumptions on
the underlying interference network to reduce bias in
the difference in means estimator or reduce variance
in the Horvitz-Thompson estimator via cluster ran-
domized designs. Some of these works rely on the
assumption of partial interference, which posits that
the underlying network is made up of disjoint groups
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and interference only occurs within, not across, groups
(Sobel, 2006; Hudgens and Halloran, 2008; Liu and
Hudgens, 2014; Bhattacharya et al., 2020; Auerbach
and Tabord-Meehan, 2021). Other works are devoted
to proposing cluster randomized designs that exploit
knowledge about the network and its structure to min-
imize the number of edges that cross clusters in set-
tings where partial interference may not hold (Ugan-
der et al., 2013; Gui et al., 2015; Eckles et al., 2017;
Brennan et al., 2022; Ugander and Yin, 2023).

Another strand of literature exploits assumptions on
the potential outcomes in their methodology while
considering simpler, unit-randomized designs instead
of, or in addition to, cluster-randomized designs
(Toulis and Kao, 2013; Cai et al., 2015; Gui et al., 2015;
Parker et al., 2017; Chin, 2019). These approaches as-
sume linear or generalized linear potential outcomes
models, reducing the estimation task to regression. A
drawback of these approaches is their assumption of
anonymous interference, which posits that only the
number, not identity, of treated units affects an in-
dividual’s outcome (Hudgens and Halloran, 2008; Liu
and Hudgens, 2014; Li and Wager, 2022), and the en-
tire population shares the same outcomes model.

To address this, Cortez et al. (2022) introduced a flex-
ible class of potential outcomes models that allow for
heterogeneous treatment effects by relaxing the anony-
mous interference assumption and instead imposing
the β-order interactions assumption, where interfer-
ence effects are constrained to small subsets of the
population. Other recent work has also adopted this
model (Cortez-Rodriguez et al., 2023; Eichhorn et al.,
2024). In both our work and Cortez et al. (2022),
the class of estimators under consideration are based
on polynomial interpolation, where a key insight is
that under a β-order potential outcomes model, the
expected average outcome of the population is a β-
degree polynomial in the treatment level. This style
of estimator was first introduced by Yu et al. (2022) for
the case when the polynomial has degree 1, and gener-
alized by Cortez et al. (2022) to polynomials of higher
degree. A drawback is that the estimator has pro-
hibitively high variance when the polynomial degree is
greater than 1, especially when the treatment proba-
bility is small. The present work addresses this by us-
ing a two-stage experimental design to reduce variance
in polynomial interpolation estimators for the TTE. A
key contribution of Yu et al. (2022) and Cortez et al.
(2022) is the unbiased estimation of causal effects with-
out any knowledge of the underlying interference net-
work, which the majority of prior approaches require.
Our approach does not require network knowledge, but
we show how using graph knowledge to select a good
graph clustering with which to correlate treatments

may improve our estimator’s performance.

A few recent works also study rollout designs for causal
inference under interference. Han et al. (2022) present
statistical tests to detect the presence of interference
using rollout designs. Our work differs from theirs in
that our focus is estimating treatment effects under in-
terference, not detecting its presence. Boyarsky et al.
(2023) leverage rollout designs as part of a model se-
lection mechanism to select a “best” model for inter-
ference. While they also study the TTE, their focus is
on its identification conditions and how rollout designs
aid in satisfying them. Viviano (2020) does not lever-
age rollout designs, instead considering a two-wave ex-
periment that uses a pilot study in the first wave to
minimize variance in causal effect estimation from a
main experiment in the second wave. Unlike our two-
stage approach, their two-wave design does not utilize
a staggered rollout. Furthermore, Viviano (2020) re-
quires anonymous interference, whereas our approach
does not.

Contributions We propose a two-stage experiment
design to address the high variance of polynomial in-
terpolation estimators under β-order interactions with
large β. Given an overall treatment budget p, for a
chosen parameter q ∈ [p, 1], the first stage samples a
p/q fraction subset of the population, and the second
stage runs a staggered rollout on the selected subset
with an effective budget of q. We propose a polyno-
mial interpolation estimator that uses the higher effec-
tive budget q, and scales the final outcome to account
for the fact that only p/q fraction of units are eligi-
ble for treatment in stage two. The increased effective
budget reduces the variance from polynomial interpo-
lation. We show the following insights:

• This two-stage estimator has less variance than a
one-stage rollout interpolation estimator, but the
sub-sampling in the first stage introduces bias.

• Larger values of q lead to higher bias due to edges
cut in stage one of the design (that is, edges cross-
ing between selected units and unselected units).

• When clustering is used in the first stage, the bias
and variance of the estimator are affected by the
edges between clusters and the variance of the av-
erage treatment effect across clusters.

• Since the variance of average cluster effects re-
lates to homophily, we see a tension between two
clustering objectives: minimizing cut edges versus
maximizing covariate balance.

• Even without network or covariate information,
the two-stage approach improves for large values
of β (i.e. richer models); a good clustering can
help improve further.
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2 Preliminaries

We estimate the effect of a treatment on a population
of n individuals, denoted [n] := {1, . . . , n}, via a ran-
domized experiment. Their treatment assignments are
collected in a binary vector z ∈ {0, 1}n, where zi = 1
(resp. zi = 0) indicates that unit i is assigned to treat-
ment (resp. control). We allow for interference, so the
potential outcome of individual i may be a function
of the entire treatment vector Yi : {0, 1}n → R. We
frame our analysis around potential outcomes with the
following two features.

First, individual i’s outcome is a function of a small
subset of the population. We visualize this subset as i’s
in-neighborhood Ni in a directed interference graph,
where an edge from j to i indicates that j’s treatment
affects i’s outcome; we call j an in-neighbor of i. We
assume the graph does not change over the timescale
of the experiment.

Assumption 1 (Neighborhood Interference):

If z, z′ have zj=z′j ∀ j∈Ni, then Yi(z)=Yi(z
′) ∀ i.

We use d := maxi |Ni| to denote the maximum in-
degree of the network. Differing from most prior work
with neighborhood interference, the underlying inter-
ference graph may be unknown. In some cases, we
leverage various levels of network knowledge such as
covariate information or full edge information.

Second, following Cortez et al. (2022), we use the bi-
nary nature of the treatments zi ∈ {0, 1} to represent
any potential outcomes under neighborhood interfer-
ence as a polynomial in z:

Yi(z) =
∑

S⊆Ni
ci,S

∏
j∈S zj , (2.1)

where the coefficients ci,S represent the additive effect
to individual i’s outcome if everyone in S is treated.
Our second assumption posits that each outcome is
affected only by small treated subsets.

Assumption 2 (β-Order Interactions): ci,S = 0
for all |S| > β.

Under this assumption, Yi(z) is a polynomial with de-
gree at most β. This is motivated by settings where
an individual is separately affected by smaller sub-
communities of their neighbors (e.g. colleagues, family
members, close friends) rather than the neighborhood
as a whole. The case β = 1 is the heterogeneous linear
outcomes model explored in Yu et al. (2022), which
generalizes the linear models commonly used in ap-
plied settings. When β = d, we return to the unre-
stricted neighborhood interference setting.

Our estimand of interest is the total treatment effect
(TTE), the average difference in outcomes when ev-

Figure 1: Visualization of extrapolated polynomials
used to estimate TTE across 200 runs of a rollout ex-
periment on a 20 × 20 lattice with β = 3. The left
plot uses a one-stage rollout (p = 0.15), as in Cortez
et al. (2022), while the right plot uses a two-stage roll-
out (q = 0.375). The two-stage design incurs bias, but
extrapolation in the one-stage design leads to higher
variance.

eryone versus no one is treated:

1
n

∑n
i=1

(
Yi(1)− Yi(0)

)
= 1

n

∑
i∈[n]

∑
S∈Sβ

i \∅ ci,S ,

(2.2)

where Sβ
i := {S ⊆ Ni : |S| ≤ β}.

Throughout, we consider completely randomized ex-
perimental designs, z ∼ CRD(xn, n), wherein a uni-
form random subset of xn entries of z are assigned 1.
We use the notation

[
xn
n

]
m

=
∏m−1

i=0
xn−i
n−i to denote

the probability that a subset of m individuals is fully
treated under such a design.

3 Two-Stage Rollout Designs

Under the β-order interactions model described in Sec-
tion 2, the quantity

E[ 1n
∑n

i=1 Yi(z)] =
1
n

∑
i∈[n]

∑
S∈Sβ

i
ci,S ·

[
xn
n

]
|S| =: F (x),

with the expectation taken over z ∼ CRD(xn, n) is
a polynomial F with degree at most β. Here, x is a
variable that represents the proportion of individuals
assigned to treatment. We can recover this polyno-
mial (along with TTE = F (1) − F (0)) by interpo-
lating through β + 1 evaluation points. Cortez et al.
(2022) use this observation to describe a TTE estima-
tor that leverages a staggered rollout experimental de-
sign, wherein β+1 observations are taken as treatment
is rolled out to increasing proportions of the popula-
tion. This estimator, equation 4 of Cortez et al. (2022),

is unbiased with variance O
(
d2β2β+2

np2β

)
, where p repre-

sents the treatment budget, i.e. proportion of the pop-
ulation assigned to treatment in the final stage of the
experiment. In each time step t ∈ {0, . . . , β}, where
tpn/β individuals are assigned to treatment, the esti-
mator accrues sampling variance by using the observed
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mean outcome F̂ (tp/β) as a proxy for F (tp/β). Then,
the extrapolation of these observations to estimate
F̂ (1) magnifies this variance by a factor of (β/p)2β

(see Figure 1). To lessen the effects of extrapolation,
we would like to sample points from F (x) closer to
1. However, to adhere to our treatment budget p, we
must restrict the rollout to a subset of the population.
This motivates the following two-stage rollout design.

Definition 3.1 (Two-Stage Rollout Design). Given a
population [n], model degree β, treatment budget p, and
parameter q ∈ [p, 1], we consider experimental designs
with the following two stages.

Stage 1: Select a subset of the population U ⊆ [n]
with |U| = pn/q and marginals Pr(i ∈ U) = p/q.

Stage 2: Run a (β + 1)-stage staggered CRD rollout
experiment on the units in U , leaving all other units
untreated. Such an experiment satisfies:

Treatment Restriction: zti = 0 ∀ t, i ̸∈ U .

Per-Round Treatment: ztU ∼ CRD
(
tpn
β , |U|

)
∀ t.

Monotonicity: zti ≥ zt−1
i ∀ i, t ≥ 1.

We interpret the parameter q as the effective treat-
ment budget of the units within set U . The treatment
restriction condition emphasizes that only indivudals
chosen in the first stage are eligible for treatment in
the second stage. The per-round treatment condition
ensures that at each time step t of the rollout, tpn/β
units are selected with a completely randomized design
from the set of individuals chosen in the first stage
(U). When q = p, U = [n] and this design reduces
to the CRD (one-stage) staggered rollout designs from
(Cortez et al., 2022). The monotonicity assumption is
natural in settings where once a unit is treated, they
are always treated because treatment cannot be “taken
back.” We consider two variants of the two-stage roll-
out design.

Example 3.2 (Unit CRD Rollout Design). Select U
according to a CRD

(
np/q, n

)
design. To realize this

design, one can sample Ui ∼ Unif(0, 1) i.i.d. for each
i ∈ [n], let U comprise the np/q individuals with high-
est Ui, and let each zt indicate the tnp/β individuals
with highest Ui.

Example 3.3 (Clustered CRD Rollout Design).

Partition the individuals into nc equal-sized clusters.
In Stage 1, use a CRD

(
ncp/q, nc

)
design to select

a subset of clusters, and include all individuals from
these clusters in U .

We assume throughout that the parameters are ap-
propriately chosen to make all treatment sizes whole
numbers. Now, following the presentation of Cortez
et al. (2022), we develop a TTE estimator for data

collected under such an experiment that leverages the
connection to Lagrange polynomial interpolation.

T̂TE := q
np

β∑
t=0

ht,q

n∑
i=1

Yi(z
t), (3.1)

where ht,q =
∏β

s=0
s̸=t

β/q−s
t−s −

∏β
s=0
s̸=t

−s
t−s come from the

Lagrange coefficients. When q = p, this estimator
coincides with the polynomial interpolation estimator
of Cortez et al. (2022). The estimator is equivalent to
applying the polynomial interpolation estimator with
the Stage 2 budget q and then scaling the result by
q/p, since only a p/q fraction of units are selected in
Stage 1 to be eligible for treatment.

The estimate can be evaluated in O(nβ) time and re-
quires no information about the edges in the interfer-
ence network. While β is a parameter of the poten-
tial outcomes model, it also appears in the estimator
due to its use of polynomial interpolation: fitting a β-
degree polynomial requires β+1 points. Note that this
estimator requires knowledge of β, as does the estima-
tor in Cortez et al. (2022). Determining or choosing β,
while an interesting and practical research direction, is
beyond the scope of this paper.

Remark 3.4. The estimator defined in (3.1) does not
require knowledge of the interference network. How-
ever, the design described in Definition 3.1 may or
may not require knowledge of the network depending
on how the subset is selected in Stage 1. For example,
the design described in Example 3.2 does not require
knowledge of the interference network, but the design
described in Example 3.3 will require graph knowledge
if the clustering method requires it.

To analyze a Clustered CRD Rollout Design, we in-
troduce the following notation. A clustering Π of the
interference network is a partition of [n] into nc dis-
joint sets; π ∈ Π is a subset π ⊆ [n] of units assigned to
the same cluster. Given a unit i ∈ [n], we define π(i)
as the cluster containing i. Given S ⊆ [n], we define
Π(S) := {π ∈ Π | ∃ i ∈ S : π = π(i)}. We define the
average treatment effect of a particular cluster π ∈ Π
as

L̄π :=
nc

n

∑
i∈[n]

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ π

)
,

which is equivalent to the portion of the TTE con-
tained in a single cluster π.

Throughout our analysis, it will be useful to consider
the cut effect, defined as:

C(δ(Π)) := 1
n

∑
i∈[n]

∑
S∈Sβ

i

ci,S · I
(
|Π(S)| ≥ 2

)
.
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The cut effect C(δ(Π)) denotes the average treatment
effect attributable to subsets S that span across mul-
tiple clusters. Since each S ⊆ Ni for some i ∈ [n],
C(δ(Π)) = 0 when there are no edges cut by the clus-
tering, and it increases with the number of cut edges.
Note that the cut effect can be equivalently expressed
as C(δ(Π)) = TTE− 1

nc

∑
π∈Π L̄π.

4 Theoretical Results

In this section, we consider the bias and variance of
estimator (3.1), with a focus on the Clustered CRD
Rollout Design from Example 3.3. In our results, we
notationally distinguish between theoretical variance
(Var) and empirical variance (V̂ar) with the hat no-
tation. Our first theorem gives a general expression
for the bias of estimator (3.1) under two-stage rollout
designs.

Theorem 4.1. Under a β-order potential outcomes
model and a Two-Stage Rollout Design, estimator
(3.1) has bias

1
n

∑
i∈[n]

∑
S∈Sβ

i
S≠∅

ci,S

[
q
p · Pr

(
S ⊆ U

)
− 1

]
.

A proof appears in Appendix A and uses the law of to-

tal expectation to derive an expression for E
[
T̂TE

]
by

first conditioning on U . When |S| = 1, i.e. S = {j},
the marginal condition Pr

(
j ∈ U

)
= p/q in Stage 1 of

the experiment ensures that these terms will not con-
tribute any bias. Rather, all of the bias comes from
larger subsets S. Intuitively, bias arises from the pos-
sibility that an individual’s neighborhood can be par-
tially within and partially outside of U ; the estimation
of such an individual i’s treatment effect via interpo-
lation will be biased as the rollout proportion in each
time step will not match the expected proportion of
Ni that is treated. However, when q = p, U = [n] such
that Pr(S ⊆ U) = 1 and the estimator is unbiased.

The next two corollaries specialize Theorem 4.1 to the
two-stage designs described in Examples 3.2 and 3.3.

Corollary 4.2. Under a β-order potential outcomes
model, the bias of (3.1) under a two-stage Unit CRD
Rollout Design is

1
n

∑
i∈[n]

∑
S∈Sβ

i \∅

ci,S

[
q
p ·

[ (p/q)n
n

]
|S| − 1

]
.

Corollary 4.3. Under a β-order potential outcomes
model and a clustering Π of the interference network
into nc equal-sized clusters, the bias of (3.1) under a
two-stage Clustered CRD Rollout Design is

1
n

∑
i∈[n]

∑
S∈Sβ

i \∅

ci,S

[
q
p ·

[ (p/q)nc

nc

]
|Π(S)| − 1

]
.

When each ci,S ≥ 0, the bias is always negative, as we
are omitting some of the effects corresponding to sets
S for which |Π(S)| ≥ 2. The magnitude of the bias can
be upper-bounded by q−p

q ·C(δ(Π)). Next, we present

a general bound on the variance of estimator (3.1).

Theorem 4.4. Under a β-order potential outcomes
model with each ciS ≥ 0 and a clustering Π of the
interference network into nc equal-sized clusters, we
bound the variance of (3.1) under a two-stage Clus-
tered CRD Rollout Design by:

I(q < 1) · q3β2Y 2
max

p2n

(
β
q

)2β(
d2 + 4β3

)
+ q−p

p(nc−1) V̂ar(L̄π)

+ I(q > p) · 2d2Ymax

nc
· C(δ(Π)).

where Ymax is a bound on the outcomes.

The first term, which has an exponential dependence

on β, is from upper bounding the EU [Varz(T̂TEPI | U)]
term from the law of total variance. As this term
grows exponentially with β, it is large when β is not
small. Since it also does not depend on the cluster-
ing, we can only make it small by choosing q close to
1. When q = 1 all selected units are assigned treat-

ment, so EU [Varz(T̂TEPI | U)] = 0 because there is no
randomness in the second stage conditioned on U .

The second and third terms are from upper bounding

VarU [Ez(T̂TEPI | U)]. When q = p, U = [n] is deter-

ministic, such that VarU [Ez(T̂TEPI | U)] = 0. When
q > p, these terms reflect the impact of the cluster-
ing on the performance of the estimator. The sec-
ond term is small if V̂ar(L̄π) is small while nc is still

large. Intuitively V̂ar(L̄π) is small if the average ef-
fects within clusters is well-balanced across clusters,
i.e. clusters are similar to each other with respect
to their average treatment effects. If covariates are
positively correlated with the treatment effects, this
encourages clusters that have good covariate balance.
The third term depends on the magnitude of the ef-
fects from sets S with membership in more than one
cluster, which is the same expression that showed up
in the upper bound on the magnitude of the bias. This
encourages clusters that minimize cut edges.

When the interference network exhibits strong ho-
mophily, these two clustering objectives are in tension:
minimizing cut edges may decrease the cut effect, but
increase V̂ar(L̄π) by lowering covariate balance. This
suggests that traditional clustering algorithms that fo-
cus only on graph-based objectives like minimizing the
cut may not be optimal. This is important because the
literature on graph clustering often focuses on cluster-
ing objectives related to graph structure (e.g. edges).
Meanwhile, covariate balance is important in causal in-
ference settings where potential outcomes may be cor-
related with covariates. At the intersection of these
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two research areas is causal inference under network
interference, where an effective clustering should cap-
ture more than just graph structure when there is ho-
mophily. This is an important reminder that with
cluster-randomized designs for causal inference under
network interference, considering both graph structure
and covariate balance may be crucial.

Remark 4.5.

When we plug q = p into the bound from Theorem 4.4,

we obtain variance bound
β2β+2Y 2

max

p2β−1n

(
d2 + 4β3

)
, which

we can compare to the asymptotic variance bound

O
(

d2β2β+2Y 2
max

p2βn

)
from Cortez et al. (2022). If we as-

sume we are in the β ≪ d regime, then these bounds
differ by a factor of 1

p .

4.1 The β = 1 Setting

Here, we strengthen our variance bounds for the set-
ting of linear (β = 1) heterogeneous outcomes models.
As noted above, estimator (3.1) is unbiased in this set-
ting. For each j ∈ [n], let us introduce the quantity
Lj =

∑
i : j∈Ni

ci,{j} to represent the total outgoing ef-
fect that treating j has on the population. We use
Lemma 4.6, restated from Yu et al. (2022) to under-

stand the variance of T̂TE.

Lemma 4.6. Suppose that z ∼ CRD(p·|z|, |z|). Then,

Var
(

1
p·|z|

∑
i Lizi

)
= 1−p

p·(|z|−1) · V̂ar
(
Li

)
,

where V̂ar
(
Li

)
= 1

|z|
∑

j(Li)
2−

(
1
|z|

∑
j(Li

)2
and |z| is

the total number of entries in z.

We use this lemma to derive the variance expression
in the following theorem.

Theorem 4.7. Under a potential outcomes model with
β = 1 and a two-stage Clustered CRD rollout design
with clustering Π, estimator (3.1) has variance

1−q
pn−q · V̂ar

j∈[n]
(Lj) + (q−p)(pn−1)

p(nc−1)(pn−q) · V̂arπ∈Π

(
L̄π

)
.

The proof is in Appendix A. The V̂arj∈[n](Lj) term
is the empirical variance of treatment effects across
the population and comes from applying Lemma 4.6
where the outer sum is over units i ∈ [n]. The V̂ar(L̄π)
term is the across-cluster variance of average cluster
treatment effects and comes from applying the lemma
where the outer sum is indexed over clusters π ∈ Π.
When q = 1, the design is a simple cluster randomized
design where every selected cluster in the first stage
is treated in the second stage, and the variance ex-
pression simplifies to 1−p

p(nc−1) V̂arπ∈Π

(
Êj∈π[Lj ]

)
. This

aligns exactly with the cluster-randomized result from
Yu et al. (2022). When q = p, our variance expression

is 1−p
p(n−1) V̂arj∈[n](Lj) and aligns exactly with the com-

pletely randomized design result from Yu et al. (2022).
When q ∈ (p, 1), some of the variance is attributable
to the population-wide variance of influences (which
we have no control over) and some of the variance is
attributable to variance of average influences across
clusters, which can be controlled with a clustering that
enforces covariate balance in settings where covariates
positively correlate with treatment effects. Note that
cut edges do not play a role in the bias or variance
when β = 1.

5 Experiments

In this section, we use experiments on both synthetic
and real-world networks to analyze the performance of
the two-stage estimator.

Potential Outcomes Model. We use synthetic po-
tential outcomes that generalize the response model of
Ugander and Yin (2023) to incorporate β-order inter-
actions; refer to Section 6.2 in their paper for an in-
depth description of the design choices of this model.
The model incorporates homophily, degree-correlated
effects, and β-order interference. Unless otherwise
noted, our choices for the parameter values agree with
Ugander and Yin (2023). Refer to Appendix B.2 for
further details about the model and parameters.

Networks. The synthetic networks that we consider
are

√
n×

√
n lattice graphs. We include all self-loops

in these networks.

In addition, we consider three real-world networks: an
email communication network (Leskovec et al., 2007b),
a social network (Rossi and Ahmed, 2015), and a co-
purchase network in an online marketplace (Leskovec
et al., 2007a); details of these networks can be found in
Appendix B.2. Each dataset includes a network and
a set of feature labels F assigned to its vertices. In
our experiments, we sometimes use these features to
cluster the networks.

Running the Experiments. The source code
for our experiments and plots found within our
manuscript is available in the supplementary materi-
als. All of our experiments were run on a MacBook
Pro with an M3 chip and 16GB of memory and ran in
under two hours parallelized across its 8 cores.

5.1 Comparison with other estimators

We first empirically explore the performance of our
two-stage approach without clustering. We compare
the bias and variance of the following estimators:

• 2-Stage, the Polynomial Interpolation (PI) esti-
mator under a unit two stage rollout (with no
clustering) and q = 0.5
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Figure 2: Performance of different estimators on the
Amazon network for various values of p. The bold line
indicates the mean over 1000 replications. The shading
indicates the experimental standard deviation, calcu-
lated by taking the square root of the experimental
variance over all replications. The 2-Stage estimator
uses q = 0.5 and does not utilize clustering. Note the
scaling of the y-axes are not the same across β.

• Two difference-in-means style estimators. The
classical DM estimator, and a thresholded version,
DM(λ) that only considers individuals for which
a λ-proportion of their neighborhood shares their
treatment assignment.

• The Hájek estimator, an inverse probability
weighted-style estimator.

• The PI estimator under a one-stage CRD(pn, n)
rollout over β + 1 time steps from Cortez et al.
(2022).

• The two-stage PI estimator with q=1, equivalent
to the PI estimator under a one-stage CRD(pn, n)
rollout over 2 time steps (with no clustering).

The exact formulas for these estimators can be found
in Appendix B.3. Although the Horvitz-Thompson
estimator is also considered a baseline, due to its high
variance, it consistently performs worse than all the
other estimators considered so it is omitted. Of the
non-PI estimators, only the (unthresholded) difference
in means does not require knowledge of the underlying
interference network.

Figure 2 shows the bias and standard deviation of
these estimators as we vary the treatment budget p.
The column faceting distinguishes between the cases
of β = 1, β = 2, and β = 3. While the difference in
means estimators have low variance, their bias leads to
higher mean squared error (MSE) than the two-stage
estimator. In the β = 1 case, we have zoomed in on
the scaling since the variance of the polynomial inter-
polation estimators is very small. In this setting they
are unbiased. PI is equivalent to q=1 in this case so
they perfectly overlap and have smaller variance than
2-Stage. This suggests that when you have a truly lin-
ear model, the two-stage approach may not improve
over the one-stage approach. The remaining estima-
tors either have much worse variance or much worse

bias, and thus they do not show up on the plot.

In the β = 2 case, the difference in means estimators
are biased with very low variance. The Hájek esti-
mator has bias that decreases as p increases, but sig-
nificantly higher variance than all other approaches.
Between the three polynomial interpolation-based es-
timators, PI is unbiased with slightly larger variance
for small values of p, while 2-Stage has bias that de-
creases as p increases and q=1 has bias that remains
about the same regardless of p. In this case, the MSE
of these estimators is relatively similar, with PI do-
ing slightly better than 2-Stage for smaller values of p,
again suggesting this is not a setting where the two-
stage approach necessarily does better.

In the β = 3 case, we can see the significant variance
reduction of the two-stage estimator over PI, which
comes at the expense of a smaller introduction of bias
relative to the remaining estimators. Due to the richer
model, we see that the one-stage approach (PI) has
an extremely high variance for smaller values of p,
much larger than the bias incurred by the two-stage
approach.

Overall, the performance of the 2-Stage and PI esti-
mators is similar for most of the parameter landscape
when β = 1 or β = 2, but the variance reduction of
the 2-Stage estimator for small p and β = 3 results in
a lower MSE despite the additional bias. This makes
sense because we only expect a large error reduction
for richer models and small treatment probabilities.

These results highlight a setting where the two-stage
approach improves over the one-stage approach, even
without network information, as these experiments did
not use any clustering. Plots of the MSE and the two
other network datasets can be found in Appendix B.

5.2 Clustering effect in two-stage estimator

In this section we conduct experiments to empirically
explore the impact of clustering.

Lattice. In Figure 3, we compare the MSE of the
2-Stage estimator under two clusterings and no clus-
tering on a 100×100 lattice. The Coarse clustering is a
10×10 grid on top of the lattice; there are 100 clusters
with 100 people in each cluster. The Fine clustering
is a 2 × 2 grid on top of the lattice; there are 2500
clusters with 4 people in each cluster. Table 1 displays
some metrics for these clusterings: V̂ar

(
L̄π

)
, C(δ(Π)),

and the number of cut edges.

Table 1: Clustering Metrics for Figure 3.

Clustering V̂ar
(
L̄π

)
C(δ(Π)) Cut Edges

Coarse 0.0002 0.1229 3600
Fine 0.002 0.5703 19600
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Figure 3: Mean Squared Error of the Two-Stage TTE
estimator for two clusterings of a 100 × 100 lattice
graph, compared with no clustering, for a β-degree
potential outcomes model with β = 3. Even with no
network knowledge, we see a drastic decrease in MSE
even at the cost of incurring bias.

In Figure 3, we vary q (the treatment probability for
individuals selected in the first stage) on the y-axis and
plot the MSE, with the different shading correspond-
ing to the variance and squared bias components. The
leftmost endpoint corresponds to q = p = 0.15, equiv-
alently the one-stage setting from Cortez et al. (2022).
Since the treatment budget p is small and β = 3 (in-
dicating a richer model), the left side of each plot ex-
hibits high variance and low bias. As q increases, the
variance decreases but the bias increases due to cut
edges. Clustering reduces bias by reducing the number
of cut edges. The coarse clustering in the left plot dras-
tically decreases the error, especially as q approaches
1. The middle plot is a finer clustering, and results in
much more bias as q approaches 1. Table 1 helps eluci-
date the difference in performance. The fine clustering
cuts five times more edges than the coarse clustering,
resulting in a cut effect that is about five times larger.
Finally, the rightmost plot shows the MSE of the two-
stage estimator under no clustering, i.e. a unit CRD
2-stage rollout, and incurs the largest amount of bias.
Overall, the error for q > p is smaller than at q = p
across all plots, showing settings where a two-stage
design leads to improvement over a one-stage design.

Real-world Networks. We compare two methods
of clustering the real-world networks. In the clustering
with Full Graph Knowledge, we cluster the true under-
lying graph using the METIS clustering library by
Karypis and Kumar (1998). In the clustering with
Covariate Knowledge, clusters are based on features.
When each vertex is assigned to one feature, we use
these assignments as the clustering. When vertices
may have multiple features we form a feature graph
— a weighted graph, where the weight of edge (i, j) is
the number of feature labels shared by i and j — and
cluster this feature graph using METIS.

We highlight the Amazon network here, but additional
experiments with the other networks are in Appendix
B. Figure 4 depicts the results of such an experiment

Figure 4: Mean Squared Error of the Two-Stage TTE
estimator for two clusterings (with 250 clusters) of the
Amazon network, compared with no clustering, for a
β-degree potential outcomes model with β = 3. Even
with no network knowledge, we see a drastic decrease
in MSE even at the cost of incurring bias.

run on a co-purchasing network of Amazon products.
We compare the two clusterings of this graph as de-
scribed above, each time partitioning the network into
250 parts, against no clustering. To generate these
plots, we compute the experimental bias, sampling
variance, and total variance, over 1000 replications.
Here, we vary q from q = p = 0.1 to q = 1. In the first
plot, showing the MSE of the estimator when the clus-
tering uses full network knowledge, the MSE is mini-
mized at q = 1 with value 0.024. In the second plot,
showing the MSE of the estimator when the clustering
only uses covariate knowledge, the MSE is minimized
around q = 0.5 with value 0.22. Table 2 gives insight
into the difference in performance under these clus-
terings. The clustering with covariate knowledge cuts
about five times as many edges as the clustering with
full graph knowledge, resulting in a cut effect that is
about 5 times larger.

Table 2: Clustering Metrics for Figure 4.

Cluster V̂ar
(
L̄π

)
C(δ(Π)) Cuts

Full 0.2488 0.1258 7670
Covariate 0.0426 0.5436 41243

In the final plot, showing the MSE of the estimator
under a two-stage unit CRD design, the MSE is mini-
mized around q = 0.5 with value 0.32. Recall that the
leftmost endpoint of each plot corresponds to the error
when q = p, i.e. under the one-stage rollout. Although
a clustering with full network knowledge achieves the
best overall performance, we see a significant error re-
duction over a one-stage even for a two-stage unit CRD
design. Thus, using the two-stage estimator may re-
duce MSE (versus a single-stage rollout) even without
a clustering or network knowledge.

In Table 3, we record some metrics of clusterings of
different sizes computed with full network or covariate
knowledge. These experiments use a β-degree poten-
tial outcomes model with β = 3. The parameter nc
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Table 3: Clustering Metrics for Amazon Network

Cluster nc V̂ar
(
L̄π

)
C(δ(Π)) qmin MSE

Full 50 0.156059 0.088226 1 0.035
Full 100 0.187048 0.102260 1 0.028
Full 250 0.248759 0.125772 1 0.024

Covariate 50 0.019543 0.517855 0.5 0.211
Covariate 100 0.025207 0.536876 0.5 0.228
Covariate 250 0.042644 0.543623 0.5 0.220

indicates the number of clusters. In each row, qmin

is the value of q that minimizes the MSE and the
column MSE contains that value. We computed the
minimum empirically. Generally, having more clusters
corresponds to a higher across-cluster variance of av-
erage cluster influences and a higher cut effect. How-
ever, regardless of cluster size, the MSE is still dras-
tically decreased from 38 (at q = p) to about 0.2 un-
der a covariate-based clustering (at q = 0.5) and to
about 0.02 with a full graph knowledge-based cluster-
ing (at q = 1). Clustering with full knowledge has
higher across-cluster variance of average cluster influ-
ences but smaller cut effect compared with clustering
with covariate knowledge. This reminds us that there
is a tension between cut edges and covariate balance.
While a common clustering objective is to minimize
cut edges, there may be settings where enforcing some
covariate balance may be wise if there is homophily.
This is because if there is strong homophily, edges are
correlated with covariates. If there is reason to believe
these covariates are highly correlated with potential
outcomes, then minimizing cut edges might minimize
the cut effect but maximize the variance of cluster in-
fluences.

Our theoretical and experimental results explore set-
tings with equal-sized clusters, such as in Eckles et al.
(2017); Brennan et al. (2022); Candogan et al. (2024),
which may be too difficult a constraint to meet in
many practical settings. In theory, unequal-size clus-
ters should not affect bias but will affect the variance of
the estimates. For the experiments on real-world net-
works, we use the METIS clustering library, which can
only do equal-size clusters. Exploring the performance
under unequal-sized clusters is a practical direction for
future work.
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Supplementary Materials

A PROOFS

Theorem 4.1

Proof. We use the Law of Total Expectation, conditioning on the set of individuals U selected in the first stage
and reasoning about the randomness from the treatment assignments z. We have,

E
z

[
T̂TEPI

∣∣ U] = q
np

β∑
t=0

ht,q

n∑
i=1

∑
S∈Sβ

i

ci,S · E
z

[ ∏
j∈S

ztj
∣∣ U]

= q
np

β∑
t=0

ht,q

n∑
i=1

∑
S∈Sβ

i

ci,S · I(S ⊆ U) ·
[
tpn/β
|U|

]
|S|

= q
np

n∑
i=1

∑
S∈Sβ

i

ci,S · I(S ⊆ U)
β∑

t=0

ht,q

[
tpn/β
|U|

]
|S|

= q
np

n∑
i=1

∑
S∈Sβ

i

ci,S · I
(
S ⊆ U

)(
1|S| − 0|S|

)

= q
np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U

)
(A.1)

Here, the fourth line follows from the properties of Lagrange interpolation. Note that ht,q = ℓt,x(1) − ℓt,x(0),

where ℓt,x is the t’th Lagrange basis polynomial with evaluation points x =
(
tq
β

)
t∈0,...,β

=
( tpn/β

|U|
)
t∈0,...,β

. Thus,

for any polynomial f(x) with degree at most β,

β∑
t=0

ht,q · f
(
tq
β

)
= f(1)− f(0).

In this case, we let f(x) =
[
x|U|
|U|

]
|S|

, to find that

β∑
t=0

ht,q

[
tpn/β
|U|

]
|S|

= [1]|S| − [0]|S| = 1|S| − 0|S|.

Now, taking the expectation over the randomness in U , we obtain

E
[
T̂TEPI

]
= E

U

[
E
z

[
T̂TEPI

∣∣ U]]
= 1

n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · q
p · Pr(S ⊆ U).

The bias expression in the theorem statement follows from the expression for TTE given in (2.2).
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Theorem 4.4

We also use the following algebraic lemma.

Lemma A.1. For all 0 < k ≤ nU ≤ 1,

|ht,q| =
β∏

s=0
s ̸=t

β/q−s
t−s −

β∏
s=0
s̸=t

−s
t−s ≤

(
β
q

)β
.

Proof. When β = 1, |h0,q| = |h1,q| = 1
q , so the inequality holds (with equality). Thus, we can restrict our

attention to β ≥ 2, for which we consider in two cases. First, if t ≥ 1, we have

∣∣ht,q

∣∣ = ∣∣∣ β∏
s=0
s̸=t

β/q−s
t−s

∣∣∣ ≤ (
β
q

)β
.

The equality uses the definition of ht,q, and the inequality upper bounds the numerator of each factor with β/q
and lower bounds the denominator of each factor by 1. When t = 0, we apply the triangle inequality to conclude
that ∣∣h0,q

∣∣ = ∣∣∣ β∏
s=1

β/q−s
−s − 1

∣∣∣ ≤ β∏
s=1

β
sq + 1 = 1

β!

(
β
q

)β

+ 1.

Since β ≥ 2 and q ≤ 1, we must have 1 ≤ 1
2

(
β
q

)β
. Thus we can upper-bound this last expression by

1
β!

(
β
q

)β

+ 1
2

(
β
q

)β
=

(
1
β! +

1
2

)
·
(

β
q

)β

≤
(

β
q

)β

.

We also prove a slightly stronger version of Theorem 3 from Cortez et al. (2022) with the constants specified. It
first relies on a slightly modified version of Lemma 8 from Cortez et al. (2022).

Lemma A.2. For any x ∈ (0, 1] and any constants a, b ∈ N such that xn ≥
√
2ab+ b− 1,

∣∣∣∣∣
[
xn−a
n−a

]
b[

xn
n

]
b

− 1

∣∣∣∣∣ ≤ 2ab
xn−b+1 ,

Proof. First, let us note that when a = 0 or b = 0, both sides of this inequality simplify to 0, so it holds
with equality. Thus, we assume throughout the rest of the proof that a, b > 0. Note that our assumption
xn ≥

√
2ab+ b− 1 with x ≤ 1 implies that n ≥ a+ b− 1.

Now, given any any i ∈ {0, . . . , b− 1},

xn− a− i

n− a− i
≤ xn− i

n− i
⇒

[
xn−a
n−a

]
b[

xn
n

]
b

≤ 1.

As a result, expanding the bracket notation, we have,∣∣∣∣∣
[
xn−a
n−a

]
b[

xn
n

]
b

− 1

∣∣∣∣∣ = 1−
b−1∏
i=0

(xn− a− i

xn− i

)( n− i

n− a− i

)

= 1−
b−1∏
i=0

(
1− a

xn− i

)(
1 +

a

n− a− i

)
︸ ︷︷ ︸

≥1
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≤ 1−
b−1∏
i=0

(
1− a

xn− b+ 1

)
(i ≤ b− 1)

= −
b∑

j=1

(
b

j

)(
− a

(xn− b+ 1)

)j

(binomial expansion)

≤
b∑

j=1

(
b

j

)( a

(xn− b+ 1)

)j

· I(j is odd)

≤
( ab

xn− b+ 1

) ⌊(b−1)/2⌋∑
j=0

( ab

xn− b+ 1

)2j

≤
( ab

xn− b+ 1

) ⌊(b−1)/2⌋∑
j=0

( 1√
2

)2j

(xn ≥
√
2ab+ b− 1)

≤ 2ab

xn− b+ 1
. (geometric series with factor 1

2 )

We use this to lemma to give an upper bound on the covariance of two sets being treated under a CRD rollout
design with ptn

β individuals treated in round t for each t ∈ {0, . . . , β}.

Lemma A.3. If pt′n
β ≥ 2β2 + β − 1, then for t ≤ t′ and S ∩ S ′ = ∅ with |S|, |S ′| ≥ 1, it follows that∣∣∣∣Cov[ ∏

j∈S
ztj ,

∏
j′∈S′

zt
′

j′

]∣∣∣∣ ≤ 4pβ3

n
.

Proof. First, let us note that if t = 0, then the first argument of this covariance is not random, so the covariance
simplifies to 0, trivially satisfying the bound. Thus, we may assume that 1 ≤ t ≤ t′. We can rewrite the
covariance expression:∣∣∣∣Cov [ ∏

j∈S
ztj ,

∏
j′∈S′

zt
′

j′

]∣∣∣∣ = ∣∣∣∣E [ ∏
j∈S

ztj
∏

j′∈S′

zt
′

j′

]
− E

[ ∏
j∈S

ztj

]
E
[ ∏
j′∈S′

zt
′

j′

]∣∣∣∣
=

[
ptn/β

n

]
|S|

[
pt′n/β

n

]
|S′|

·

∣∣∣∣∣∣∣
[
pt′n/β−|S|

n−|S|

]
|S′|[

pt′n/β
n

]
|S′|

− 1

∣∣∣∣∣∣∣ .
We can bound this last absolute value expression using Lemma A.2, letting x = pt′/β, a = |S|, and b = |S ′|.
Note that a, b ≤ β, so our assumption that pt′n

β ≥ 2β2 + β − 1 ensures that xn ≥
√
2ab+ b− 1. We find that∣∣∣∣Cov [ ∏

j∈S
ztj ,

∏
j′∈S′

zt
′

j′

]∣∣∣∣ ≤ (
pt
β

)|S|(
pt′

β

)|S′|
· 2|S||S ′|

pt′n
β − |S ′|+ 1

≤ 2p2β3

pn− β2
≤ 4pβ3

n

Here, the final equality uses the fact that pn ≥ pt′n/β ≥ 2β2 to conclude that p
pn−β2 ≤ 2

n .

When S ∩ S ′ ̸= ∅ for |S|, |S ′| ≥ 1, it follows that∣∣∣∣Cov [ ∏
j∈S

ztj ,
∏

j′∈S′

zt
′

j′

]∣∣∣∣ ≤ p.

Plugging this into Lemma 6 of Cortez et al. (2022), (so, in their notation, α =
(

β
p

)β

, B1 = p, and B2 = 4pβ3

n ),

we can upper bound the variance of the staggered rollout estimator under a CRD rollout design by

Var
(
T̂TE

)
≤ β2Y 2

maxp

n
·
(

β
p

)2β

·
(
d2 + 4β3

)
. (A.2)
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Proof of Theorem 4.4.

By the Law of Total Variance, we have

Var
z

(
T̂TE

)
= E

U

[
Var
z|U

(
T̂TE

)]
+Var

U

(
E
z

[
T̂TE

∣∣ U]).
We separately bound each of these terms.

First Term:

First, let us note that when q = 1, h0,q = −1, hβ,q = 1 and ht,q = 0 for all 0 < t < β. In this case, we may
simplify the estimator to

T̂TE = 1
np

n∑
i=1

Yi(z
β)− Yi(z

0).

Conditioned on U , this quantity is deterministic, since zβj = I(j ∈ U) and z0j = 0. Thus, the variance of the
estimator conditioned on U is 0, making the first term of our variance expression 0. Thus, we may restrict our
attention to the case when q < 1 and multiply the resulting expression by the indicator I(q < 1) in our final
bound.

Now, let z̃ ∼ CRD(qn, n) be a random vector with ztj = z̃tj · I(j ∈ U). Conditioned on U , we may rewrite our
estimator:

T̂TE = q
np

β∑
t=0

ht,q

n∑
i=1

∑
S∈Sβ

i

ci,S
∏
j∈S

ztj

=

β∑
t=0

ht,q ·
(

1
n

n∑
i=1

∑
S∈Sβ

i

q
p · ci,S · I(S ⊆ U)

∏
j∈S

z̃tj

)

=

β∑
t=0

ht,q ·
(

1
n

n∑
i=1

∑
S∈Sβ

i

c̃i,S
∏
j∈S

z̃tj

)

=

β∑
t=0

ht,q ·
(

1
n

n∑
i=1

Ỹi(z̃
t)
)
,

where

c̃i,S = q
pci,S · I(S ⊆ U), Ỹi(z̃) =

∑
S∈Sβ

i

c̃i,S
∏
j∈S

z̃tj .

Writing it in this way, we can see that the distribution of T̂TE conditioned on U is equivalent to the distribution
of the polynomial interpolation estimator in Cortez et al. (2022) with z̃ ∼ CRD(qn, n) for a modified potential
outcomes model given by the coefficients c̃i,S .

Under the assumption that ci,S ≥ 0, then Ỹi(z) ≤ q
pYi(z).

As a result, the variance of T̂TE conditioned on U can be upper-bounded from (A.2). As this expression does
not depend on U ,

E
U

[
Var
z|U

(
T̂TE

)]
≤ q3β2Y 2

max

p2n ·
(

β
q

)2β

·
(
d2 + 4β3

)
.

Second Term:

First, let us note that when q = p, every individual is deterministically included in U during Stage 1 of the
experiment. In this case, the second term, which concerns a variance over U , is 0. Thus, we may restrict our
attention to the case when q > p and multiply the resulting expression by the indicator I(q > p) in our final
bound.
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We first split Ez

[
T̂TEPI

∣∣ U] from (A.1) into the terms associated to sets S that are fully contained inside a
cluster as opposed to sets S that contain members of more than one cluster.

E
z

[
T̂TEPI

∣∣ U] = q
np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U , |Π(S)| = 1

)
+ q

np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U , |Π(S)| ≥ 2

)
. (A.3)

We may rewrite the first term of (A.3):

q
np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U , |Π(S)| = 1

)
= q

np

n∑
i=1

∑
π∈Π

xπ

∑
S∈Sβ

i
S≠∅

ci,S · I
(
S ⊆ π

)
= q

pnc

∑
π∈Π

xπL̄π,

where xπ = I
(
π ⊆ U

)
and L̄π is defined as in the main text, with

L̄π = nc

n

n∑
i=1

∑
S⊆[n]

ci,S · I
(
S ⊆ π

)
,

which represents the effects associated with sets fully contained inside cluster π. In Stage 1, we select clusters
according to a CRD design. In particular, x ∼ CRD(pnc/q, nc). Applying Lemma 4.6, we find that the variance
of the first term of (A.3) is equal to

q−p
p(nc−1) · V̂ar

(
L̄π

)
.

To upper bound the terms of the variance associated to the second term of Ez

[
T̂TEPI

∣∣ U] associated to all the
sets S for which |Π(S)| ≥ 2, we use the bound that for any S such that |Π(S)| ≥ 2,

Cov
(
I
(
S ⊆ U), I

(
S ′ ⊆ U)

)
≤ Pr(S ⊆ U) · I

(
Π(S) ∩Π(S ′) ̸= ∅

)
.

In addition, we’ll make use of our assumption that each ciS ≥ 0. Plugging in these bounds, it follows that

Cov
(

q
np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U , |Π(S)| ≥ 2

)
, q
pnc

∑
π∈Π

xπL̄π

)

= q2

nncp2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
|Π(S)| ≥ 2

) ∑
π∈Π

L̄π Cov(I
(
S ⊆ U), xπ)

≤ q2

nncp2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
|Π(S)| ≥ 2

) ∑
π∈Π

L̄π · Pr(S ⊆ U) · I(c ∈ Π(S))

= q2

p2nnc

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) ∑
π∈Π(S)

L̄π

= q2

p2n2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) ∑
π∈Π(S)

∑
i′∈[n]

∑
S′∈S′β

i

ci′,S′ · I
(
S ′ ⊆ π

)
≤ q2

p2n2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) ∑
π∈Π(S)

∑
i′∈[n]

I
(
π ∈ Π(Ni′)

) ∑
S′∈S′β

i

ci′,S′

≤ q2Ymax

p2n2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) ∑
π∈Π(S)

∑
i′∈[n]

I
(
π ∈ Π(Ni′)

)
≤ q2Ymax

p2n2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) ∑
π∈Π(S)

nd
nc
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= q2dβYmax

p2nc

(
1
n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

))
.

In addition,

Var
(

q
np

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
S ⊆ U , |Π(S)| ≥ 2

))

= q2

n2p2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
|Π(S)| ≥ 2

) n∑
i′=1

∑
S′∈Sβ

i′\∅

ci′,S′ · I
(
|Π(S ′)| ≥ 2

)
· Cov

(
I
(
S ⊆ U), I

(
S ′ ⊆ U)

)

≤ q2

n2p2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
|Π(S)| ≥ 2

) n∑
i′=1

∑
S′∈Sβ

i′\∅

ci′,S′ · Pr(S ⊆ U) · I
(
Π(S) ∩Π(S ′) ̸= ∅

)

≤ q2

p2n2

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) n∑
i′=1

I
(
Π(Ni) ∩Π(N ′

i ) ̸= ∅
) ∑

S′∈Sβ

i′\∅

ci′,S′

≤ q2Ymax

p2n

(
1
n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

) n∑
i′=1

I
(
Π(Ni) ∩Π(N ′

i ) ̸= ∅
))

≤ q2d2Ymax

p2nc

 1

n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S Pr(S ⊆ U)I
(
|Π(S)| ≥ 2

) .

Putting it all together, we get that

Var
U

[
E
z

(
T̂TEPI | U

)]
≤ q−p

p(nc−1) · V̂ar
(
L̄π

)
+
(

dβYmax

nc
+ d2Ymax

nc

)(
q2

p2n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

))

≤ q−p
p(nc−1) · V̂ar

(
L̄π

)
+
(

dβ
nc

+ d2

nc

)
Ymax

(
1
n

n∑
i=1

∑
S∈Sβ

i \∅

ci,S · I
(
|Π(S)| ≥ 2

))

≤ q−p
p(nc−1) · V̂ar

(
L̄π

)
+
(

dβ
nc

+ d2

nc

)
· YmaxC(δ(Π))

≤ q−p
p(nc−1) · V̂ar

(
L̄π

)
+ 2d2

nc
· YmaxC(δ(Π)).

Here, the second inequality uses the fact that

Pr(S ⊆ U) · I
(
|Π(S)| ≥ 2

)
≤ (p/q)2 · I

(
|Π(S)| ≥ 2

)
.

Theorem 4.7

Proof. When β = 1, the estimator simplifies to

T̂TE = 1
np

∑
i∈[n]

(
Yi(z

1)− Yi(0)
)
= 1

np

∑
j∈[n]

Ljz
1
j = 1

np

∑
π

∑
j∈π

Ljz
1
j .

Conditioning on U , the estimator becomes

1
np

∑
j∈U

Ljz
1
j = 1

q|U|

∑
j∈U

Ljz
1
j ,
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where here we use the fact that |U| = np
q . Since zU ∼ CRD(q|U|, q), we may use Lemma 4.6 to obtain an

expression for the conditional variance:

Var
z|U

(
T̂TEPI

)
= 1−q

q(|U|−1) ·
[

1
|U|

∑
j∈U

L2
j −

(
1
|U|

∑
j∈U

Lj

)2
]
.

Taking the expectation of this conditional variance with respect to U , we have

E
U

[
Var
z|U

(
T̂TEPI

)]
= 1−q

q(|U|−1)

[
1
|U|

∑
j∈[n]

L2
j · Pr(j ∈ U) − 1

|U|2
∑
j∈[n]

∑
j′∈[n]

LjLj′ · Pr(j, j′ ∈ U)
]

= 1−q
np−q

[
q
np

∑
j∈[n]

L2
j · Pr(j ∈ U) − q2

n2p2

∑
j∈[n]

∑
j′∈[n]

LjLj′ · Pr(j, j′ ∈ U)
]

= 1−q
np−q

[
1
n

∑
j∈[n]

L2
j −

q
n2p

∑
j∈[n]

∑
j′∈π(j)

LjLj′ − pnc−q
n2p(nc−1)

∑
j∈[n]

∑
j′ ̸∈π(j)

LjLj′

]

= 1−q
np−q

[
1
n

∑
j∈[n]

L2
j −

q
n2p

∑
π∈Π

(∑
j∈π

Lj

)2

− pnc−q
n2p(nc−1)

[( ∑
π∈Π

∑
j∈π

Lj

)2

−
∑
π∈Π

(∑
j∈π

Lj

)2]]

= 1−q
np−q

[
1
n

∑
j∈[n]

L2
j −

q
n2p

∑
π∈Π

(∑
j∈π

Lj

)2

− pnc−q
n2p(nc−1)

( ∑
j∈[n]

Lj

)2

+ pnc−q
n2p(nc−1)

∑
π∈Π

(∑
j∈π

Lj

)2
]

= 1−q
np−q

[
1
n

∑
j∈[n]

L2
j +

(p−q)nc

n2p(nc−1)

∑
π∈Π

(∑
j∈π

Lj

)2

− pnc−q
p(nc−1)

(
1
n

∑
j∈[n]

Lj

)2
]

= 1−q
np−q

[[
1
n

∑
j∈[n]

L2
j −

(
1
n

∑
j∈[n]

Lj

)2]
+ p−q

p(nc−1) ·
1
nc

∑
π∈Π

(
nc

n

∑
j∈π

Lj

)2

− p−q
p(nc−1)

(
1
nc

∑
π∈Π

nc

n

∑
j∈π

Lj

)2
]

= 1−q
np−q

[
V̂ar
j∈[n]

(
Lj

)
+ p−q

p(nc−1)

[
1
nc

∑
π∈Π

(
L̄π

)2 − (
1
nc

∑
π∈Π

L̄π

)2]]
= 1−q

np−q

[
V̂ar
j∈[n]

(
Lj

)
+ p−q

p(nc−1) · V̂arπ∈Π

(
L̄π

)]
.

The conditional expectation is given by

E
z

[
T̂TE

∣∣ U] = q
pnc

∑
π∈Π

(
nc

n

∑
j∈π

Lj

)
· I(π ⊆ U) = q

pnc

∑
π∈Π

L̄j · I(π ⊆ U).

Since these indicator random variables are sampled in Stage 1 according to a CRD(pnc/q, nc) distribution, we
may apply Lemma 4.6 to conclude that

Var
(

E
z|U

[
T̂TEPI

])
= 1−(p/q)

(p/q)(nc−1) · V̂arπ∈Π

(
L̄π

)
= q−p

p(nc−1) · V̂arπ∈Π

(
L̄π

)
.

Putting this together, we find that

Var
(
T̂TE

)
= 1−q

np−q · V̂ar
j∈[n]

(
Lj

)
+ (p−q)(1−np)

p(np−q)(nc−1) · V̂arπ∈Π

(
L̄π

)
.

B Experiment Details

B.1 Potential Outcomes Model

We generate synthetic potential outcomes based on a generalization of the response model from Ugander and
Yin (2023) to incorporate β-order interactions:

Yi(z) = Yi(0) ·
(
1 + δzi +

β∑
k=1

γk ·
(di
k

)−1 ∑
S∈Sβ

i

|S|=k

∏
j∈S

zj

)
, Yi(0) =

(
a+ b · hi + εi

)
· di

d
.
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In this model:

• a is a baseline effect. We select a = 1.

• h ∈ Rn is a Fiedler vector of the graph Laplacian of the network which has undergone an affine transformation
so that min(h) = −1 and max(h) = 1. This models network homophily effects.

• b controls the magnitude of the homophily effect. We select b = 0. We also ran the experiments with b = 0.5,
to compare no homophily with some homophily, but the analysis and conclusions do not change. These are
included later in the appendix.

• εi ∼
iid

N(0, σ) is a random perturbation of the baseline effect. We select σ = 0.1.

• di is the in-degree of vertex i. d is the average in-degree.

• δ is uniform direct effect on treated individuals. We select δ = 0.5.

• γk is the effect of treated subsets of size k. We select γk = 0.5k−1, which models marginal effects that decay
with the size of the treated set.

B.2 Details of Real-World Networks

Here, we provide more details of the three real-world data sets we use in our analysis. We include all the raw
data files, cleaned data, and processing scripts in our provided source code. A summary of the datasets is given
in the following table.

Dataset Vertices Edges Degree Features

Email
Leskovec et al. (2007b); Yin et al. (2017);

Leskovec and Krevl (2014)

employees
n = 1, 005

correspondence
directed

|E| = 25, 571

min: 1
max: 334
average: 25

department
|F | = 42

BlogCatalog
Rossi and Ahmed (2015);
Tang and Liu (2009b,a)

bloggers
n = 10, 312

connections
undirected

|E| = 333, 983

min: 1
max: 3, 992
average: 65

interests
|F | = 39

Amazon
Leskovec et al. (2007a);

Leskovec and Krevl (2014)

products
n = 14, 436

co-purchases
directed

|E| = 70, 832

min: 1
max: 247
average: 5

category
|F | = 13, 591

Email

The Email dataset is publicly available at https://snap.stanford.edu/data/email-Eu-core.html and is
licensed under the BSD license1. This dataset models the email communications between members of a European
research institution. The n = 1, 005 vertices of the network are (anonymized) institution members, and there is
a directed edge from individual i to individual j if i has sent at least one email to individual j.

It has a minimum degree of 1, a maximum degree of 212, and an average degree of 25.8, and its degree distribution
is visualized in Figure 5; the support of the histogram has been cropped to remove some large outliers. The
largest weakly connected component in the network contains 986 vertices, and the largest strongly connected
component contains 803 vertices.

Each individual in the network has been assigned one of 42 department labels. The sizes of these departments
vary greatly, with the smallest department including a single individual and the largest department including 109
individuals. The average department size is 23.9. In the Email network, each vertex is assigned to exactly one
department, and we use these assignments as our clustering. To pre-process this data for use in our experiments,
we added self-loops to each node in the original dataset to represent the direct effect of the node’s treatment on
their outcome (See Section 2).

BlogCatalog

The BlogCatalog dataset is publicly available at https://networkrepository.com/soc-BlogCatalog-ASU.
php and is licensed under a Creative Commons Attribution-ShareAlike License2. This dataset models the rela-

1For more information, see https://snap.stanford.edu/snap/license.html and https://groups.google.com/g/
snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ

2For more information, see https://networkrepository.com/policy.php

https://snap.stanford.edu/data/email-Eu-core.html
https://networkrepository.com/soc-BlogCatalog-ASU.php
https://networkrepository.com/soc-BlogCatalog-ASU.php
https://snap.stanford.edu/snap/license.html
https://groups.google.com/g/snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ
https://groups.google.com/g/snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ
https://networkrepository.com/policy.php
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Figure 5: The degree distribution of the Email graph

tionships between bloggers on the (now defunct) blogging website http://www.blogcatalog.com. The n = 10, 312
nodes represent bloggers and the (undirected) edges represent the social network of the bloggers.

The network has a minimum degree of 1, a maximum degree of 3,992, and an average degree of 65, and its
degree distribution is visualized in Figure 6; the support of the histogram has been cropped to remove some
large outliers. The average clustering coefficient is approximately 0.46.

Figure 6: The degree distribution of the BlogCatalog graph

Each blogger in the network has an associated blog. Blogs (and thus, bloggers) are organized under interest
categories specified by the website and can be listed under multiple categories. There are 39 such categories
in this dataset and on average; on average, each blogger is listed under 1.6 categories. As part of the data
pre-processing for our experiments, we added self-loops to each node in the original dataset, as we did with the
Email dataset.

Amazon

The Amazon dataset is publicly available at https://snap.stanford.edu/data/amazon-meta.html and is
licensed under the BSD license3. This dataset models an Amazon product co-purchasing network. The n =
14, 436 nodes represent products and each node has outgoing edges to the top 5 products with which it is a
frequent co-purchase. Thus, in addition to the self-loop at each node, each node has exactly 5 outgoing edges.

The network has a minimum in-degree of 1, a maximum in-degree of 247, and an average in-degree of 5; its
in-degree distribution is visualized in Figure 7; the support of the histogram has been cropped to remove some
large outliers.

Products are organized into categories (which correspond to attributes such as the genre, setting, and actors in
the film, as well as marketplace data such as the inclusion of these titles in certain deals or promotions) but can
belong to multiple categories. There are 13,591 possible product categories; on average each product belongs to
13.2 categories. As part of the data pre-processing for our experiments, we added all self-loops and restricted
the original dataset to only the product nodes labeled as DVDs.

3For more information, see https://snap.stanford.edu/snap/license.html and https://groups.google.com/g/
snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ

https://snap.stanford.edu/data/amazon-meta.html
https://snap.stanford.edu/snap/license.html
https://groups.google.com/g/snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ
https://groups.google.com/g/snap-datasets/c/52MRzGbMkFg/m/FIFy_6qOCAAJ
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Figure 7: The degree distribution of the Amazon graph

B.3 Other Estimators

Here, we provide additional details of the other estimators used in our experiments Section 5.

Difference-in-Means

The difference-in-means (DM) approach estimates the total treatment effect as the difference in the average
outcome of a treated individual and the average outcome of an untreated individual.

T̂TEDM =

∑
i zi · Yi(z)∑

i zi
−

∑
i(1− zi) · Yi(z)∑

i (1− zi)
.

This estimator does not utilize any knowledge of the underlying graph. It only requires knowledge of the treatment
assignments and the observed outcomes, which are always known to the experimenter. Under SUTVA, this is
an unbiased estimator (since an individual’s outcome is a function only of their treatment). However, it is not
unbiased under interference; untreated individuals may have treated neighbors which impacts their outcome,
introducing bias into our signal of the baseline effects.

To counteract this bias, at the expense of requiring network knowledge, we can limit the set of individuals used
in the estimator to those whose neighbors’ treatment assignments largely align with theirs. We refer to this as
a thresholded DM estimator.

Thresholded Difference-in-Means:

This family of estimators is parameterized by a value γ ∈ [0, 1], which can be viewed as a stringency requirement
that we place on the treatment assignments within one’s neighborhood. In particular, we only include an
individual in the “treated” set in this DM estimator if they are treated and at least a γ fraction of their neighbors
are also treated. Similarly, we will only include an individual in the “untreated” set in this DM estimator if they
are untreated and at most a (1− γ) fraction of their neighbors are treated.

T̂TEDM(γ) =

∑
i zi · Yi(z) · I

(∑
j∈Ni

zi ≥ γdi
)∑

i zi · I
(∑

j∈Ni
zi ≥ γdi

) −
∑

i(1− zi) · Yi(z) · I
(∑

j∈Ni
zi ≤ (1− γ)di

)∑
i(1− zi) · I

(∑
j∈Ni

zi ≤ (1− γ)di
)

Note that these estimators for γ > 0 require network knowledge to calculate the neighborhood treatment propor-
tions, and they are biased under interference for the same reasoning as the standard DM estimator. Note that
DM(0) (i.e., the thresholded DM estimator with parameter γ = 0) coincides with the ordinary DM estimator.
The DM(1) estimator will only consider individuals with fully treated or untreated neighborhoods. As such, the
DM(1) estimator will, under simpler randomization schemes like Bernoulli design, include very few individuals in
its “treated” and “untreated” sets. The Horvitz-Thompson and Hájek estimators also exhibit this phenomenon.

Horvitz-Thompson:

The Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952) uses inverse probability weighting to
construct an unbiased TTE estimator under arbitrary potential outcomes models. To do this, it must only
incorporate the outcomes from an individual’s neighborhoods that are either fully treated or fully untreated, as
these are the only outcomes that appear in the TTE estimand. The estimator has the form,

T̂TEHT = 1
n

∑
i∈[n]

Yi(z) · I(Ni fully treated)

Pr(Ni fully treated)
− 1

n

∑
i∈[n]

Yi(z) · I(Ni fully untreated)

Pr(Ni fully untreated)
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= 1
n

∑
i∈[n]

[
Yi(z)·

∏
j∈Ni

zj

Pr
(∏

j∈Ni
zj=1

) −
Yi(z)·

∏
j∈Ni

(1−zj)

Pr
(∏

j∈Ni
(1−zj)=1

)]
This estimator is unbiased, but it relies on network knowledge to compute the exposure probabilities in the
denominators of each fraction. A related inverse probability weighted estimator is the Hájek estimator.

Hájek

Since the HT estimator only considers individuals with fully treated and fully untreated neighborhoods, most of
the bracketed terms within its summation will be 0. To compensate for this, we can adjust the 1/n normalization
on the summation to use the expected number of non-zero entries corresponding to both terms in the bracketed
expression. This change gives the Hájek estimator (Basu, 2011).

T̂TEHájek =

∑
i∈[n]

Yi(z)·
∏

j∈Ni
zj

Pr
(∏

j∈Ni
zj=1

)
∑

i∈[n]

∏
j∈Ni

zj

Pr
(∏

j∈Ni
zj=1

) −

∑
i∈[n]

Yi(z)·
∏

j∈Ni
(1−zj)

Pr
(∏

j∈Ni
(1−zj)=1

)
∑

i∈[n]

∏
j∈Ni

(1−zj)

Pr
(∏

j∈Ni
(1−zj)=1

)
The Hájek estimator trades off a reduction in the variance over the HT estimator for the introduction of some bias
(a thorough discussion of this tradeoff is given by Khan and Ugander (2023)). As with the Horvitz-Thompson
estimator, the calculation of exposure probabilities in this estimator requires knowledge of the interference
network.

Two-Stage Estimator when q = 1

The one-stage estimator from Cortez et al. (2022) is

T̂TE
β

1-Stage :=
1

n

n∑
i=1

β∑
t=0

(
ℓt,p(1)− ℓt,p(0)

)
· Yi(z

t), ℓt,p(x) =

β∏
s=0
s̸=t

βx−ps
pt−ps . (B.1)

When evaluating the estimator with β = 1, the estimator is simply

T̂TE
β=1

1-Stage =
1

np

n∑
i=1

(
Yi(z

1)− Yi(z
0)
)

(B.2)

In what follows, we show that the two-stage rollout estimator with q = 1 is equivalent to T̂TE
β=1

1-Stage.

Theorem B.1. Under a Two-Stage Rollout Design with budget p and effective treatment budget q = 1, the
two-stage estimator defined in equation (3.1) under a model with degree β is equivalent to the estimator defined
in (B.2).

Proof. Under a Two-Stage Rollout Design with q = 1, we have

ht,q = ht,1 =

β∏
s=0
s ̸=t

β−s
t−s −

β∏
s=0
s̸=t

−s
t−s .

Notice that when t ∈ {1, 2, . . . , β−1}, i.e. t ̸= 0 and t ̸= β, at some point we have a term corresponding to s = 0
and s = β in the products above. Thus, both products are 0.

When t = 0, we have h0,1 =
∏β

s=1
β−s
0−s −

∏β
s=1

−s
0−s =

∏β
s=1

β−s
−s − 1 = −1 because the product equals 0

due to the s = β term. Similarly, when t = β, we have hβ,1 =
∏β−1

s=0
β−s
β−s −

∏β−1
s=0

−s
β−s = 1 since the second

product will equal 0 due to the s = 0 term. To summarize, we have

ht,q =


−1 t = 0

0 1 ≤ t ≤ β − 1

1 t = β

.
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B.4 Additional Experiments: Comparing Different Estimators

In this section, we have figures showing the MSE of different estimators as we vary the treatment budget p
from 0.1 to 0.5 for different model degrees β and different real-world networks. As a reminder, we compare the
following estimators:

• The two-stage polynomial interpolation estimator with q = 0.5 and no clustering, 2-Stage

• The two-stage polynomial interpolation estimator with q = 1 and no clustering, q=1

• The one-stage polynomial interpolation estimator, PI, from Cortez et al. (2022)

• The simple difference-in-means estimator, DM

• The thresholded difference-in-means estimator with parameter 0.75, DM(0.75)

• The Hájek estimator, Hájek

The first three estimators in this list are based on polynomial interpolation (PI), so we refer to them as the PI
estimators. We refer to the others as the non-PI estimators. In all MSE plots, the lines indicate the empirical
MSE over 1000 replications. In all bias and standard deviation plots, the bold line indicates the mean over 1000
replications, and the shading indicates the experimental standard deviation, calculated by taking the square root
of the experimental variance over all replications.

In Figure 8, we show the MSE corresponding to Figure 2 from Section 5. The column faceting indicates model
degree; note that the y-axis limits differ across these subplots. When β = 1, PI and q=1 are equivalent and have
slightly lower MSE compared with 2-Stage. However, the difference is hard to see without zooming in further
since the lines almost overlap. Note that the difference-in-means estimators have MSE outside the bounds of
the plots. When β = 2, the results are similar but you can start to see the difference between the three PI
estimators, which all have lower MSE when compared with the non-PI estimators. For smaller values of p, the
estimator PI has slightly lower MSE, followed by 2-Stage, followed by q=1. Again, the difference is quite small.
In this case, as noted in the main body of the paper, we are in a setting where using the one-stage rollout and
estimator is preferable. When β = 3, the difference between the three PI estimators is more pronounced. The
2-Stage has the lowest MSE, especially for lower values of p. The q=1 estimator has MSE relatively close to
it for all p-values, but does slightly worse, although better than PI for small p values. In this case, we have a
setting where the two-stage approach is valuable as it outperforms the other methods.

Figure 8: Amazon Network. MSE of different estimators as a function of treatment budget p.

In Figure 9, we show the MSE and the bias and standard deviation of the different estimators under the
BlogCatalog network. We omit the Hájek estimator because the network degree is very high; under unit
randomization, the estimator is often undefined. In all cases, the two difference-in-means estimators are very
biased, so their MSE is much worse than the PI estimators. Similar to the Amazon network, when β = 1 the PI
estimators are almost indistinguishable, with 2-Stage coming in with slightly higher MSE due to a small increase
in variance. The difference-in-means estimators do not appear on the plot since their MSE exceeds the plotting
range. When β = 2, we see that PI has higher MSE for smaller values of p due to an increased variance (the
estimator is unbiased). 2-Stage has much lower variance than PI and its bias decreases as p approaches 0.5. q=1
has even lower variance than 2-Stage and similar bias, but its bias remains worse than 2-Stage. However, their
MSE remains comparable. When β = 3, there is a much clearer difference between the PI estimators. For most
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(a) MSE of different estimators as a function of treatment budget p.

(b) Bias and variance of different estimators as a function of treatment budget p.

Figure 9: BlogCatalog Network.

values of p, PI has the worst variance (due to extrapolation with a richer model), while q=1 has the worst bias
(due to the heavier reliance on the subsampling). Meanwhile, 2-Stage is in between, with lower bias, but larger
variance than q=1 and with higher bias, but lower variance than PI. In terms of MSE, q=1 outperforms the
other estimators. Recall that the q=1 estimator is equivalent to the β = 1 version of the one-stage PI estimator.
This setting shows that although the two-stage approach can greatly reduce error over the one-stage approach
even without clustering, an even simpler design (one-stage rollout over just two time steps) and estimator (using
observations from the two time steps) can still outperform.

The results from Figure 10 are the same as Figure 9.

B.5 Additional Experiments: Comparing Different Clusterings

We compare the performance of the 2-Stage estimator under two clustering methods versus no clustering in the
first stage of the experimental design. In the clustering with full graph knowledge, we cluster the true
underlying graph using the METIS clustering library Karypis and Kumar (1998). In the clustering with
covariate knowledge, clusters are based on features. When each vertex is assigned to one feature, we use these
assignments as the clustering. When vertices may have multiple features we form a feature graph — a weighted
graph, where the weight of edge (i, j) is the number of feature labels shared by i and j — and cluster this feature
graph using METIS. In all plots, the column faceting indicates the type of clustering and the y-axis varies q on
the interval [p, 1], where p = 0.1.

We also include tables with various pieces of information pertaining to the performance of the two-stage design
and estimator, including clustering metrics such as number of cut edges, the cut effect C(δ(Π)), and the empirical

variance across clusters of cluster average influences V̂ar
(
L̄π

)
. The latter two metrics are defined in Section 3.

In each row, qmin is the value of q that minimizes the MSE and the column MSE(qmin) contains that value.

In Figure 11, we show the results for the BlogCatalog network under a model with degree β = 2. In this
case, the clusterings each have nc = 50 clusters. For this network, clustering does not appear to be of any help
in reducing the bias and at worst, under a clustering that uses full graph knowledge, increases variance. Taking
a look at the first two rows of Table 4 sheds some light on this. We see that the V̂ar

(
L̄π

)
under a clustering that
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(a) MSE of different estimators as a function of treatment budget p.

(b) Bias and variance of different estimators as a function of treatment budget p.

Figure 10: Email Network.

Table 4: Clustering Metrics for BlogCatalog Network

β Cluster V̂ar
(
L̄π

)
C(δ(Π)) Cut Edges qmin MSE(qmin)

2 Full 0.697 0.471 604504 0.5 0.260
2 Covariate 0.059 0.486 643080 0.5 0.190
3 Full 0.703 0.717 604504 1 0.610
3 Covariate 0.060 0.734 643080 1 0.486

uses full graph knowledge is more than ten times higher than a clustering that only uses covariate information.
The number of cut edges is similar under both clusterings and thus so is the cut effect. In this example, it would
appear that one is better off not clustering at all.

In Figure 12, we show the results for the Email network under a model with degree β = 2. In this case, the
clusterings each have nc = 42 clusters. We see an advantage with clustering on covariates in particular. The
highest bias, but lowest variance, is under no clustering. The clustering with full knowledge certainly decreases
variance versus no clustering, but at the expense of incurring a lot of variance. The lowest MSE is achieved by
the covariate knowledge clustering at q = 1, which strikes a balance between bias and variance. Taking a look at
Table 5, we see that the V̂ar

(
L̄π

)
term is similar under both clusterings. However, the covariate clustering cuts

about a quarter less edges than the full knowledge clustering and thus has a smaller cut effect.

Table 5: Clustering Metrics for Email Network

β Cluster V̂ar
(
L̄π

)
C(δ(Π)) Cut Edges qmin MSE(qmin)

2 Full 0.399 0.442 21756 0.5 0.232
2 Covariate 0.398 0.372 16284 1 0.133
3 Full 0.417 0.686 21756 1 0.483
3 Covariate 0.412 0.591 16284 1 0.288
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Figure 11: BlogCatalog Network. MSE of 2-Stage estimator under two different clusterings versus no clus-
tering, as a function of q.

Figure 12: Email Network. MSE of 2-Stage estimator under two different clusterings versus no clustering, as a
function of q.

B.6 Additional Experiments: Homophily Parameter b = 0.5.

In this section, we show some results when the model exhibits homophily by setting the parameter b = 0.5. All
other parameters are set to the same values as previous plots. Although there are some small visual differences
between the plots in this section and the plots throughout the rest of this work, the analyses and conclusions
remain the same. For example, we can compare Figure 8 (where b = 0) with 13a (where b = 0.5). Both of these
show the MSE of different estimators for different values of treatment budgets p and different model degrees β.
Notice the difference in the scaling on the y-axis, particularly for β = 2 and β = 3. However, the patterns are the
same: for most values of p, the two difference in means estimators have the highest MSE, followed by the Hájek
estimator, and then followed by the three PI estimators. When β = 3, the MSE of the vanilla PI estimator is
extremely high for small values of p, but gets smaller than the non-PI estimators around p = 0.2. In general, for
β = 3, 2-Stage tends to outperform PI for many paramter values and for some networks, q=1 has the smallest
MSE in some cases. When β = 2, we see that the two stage approach improves over the one stage approach
under the BlogCatalog and Email networks for small values of p. When β = 1 the performances of the PI
estimators are similar, with 2-Stage performing ever so slightly worse.
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In Figure 14, we show the performance of the two stage approach under two different clustering versus no
clustering for three different networks. The BlogCatalog and Email network results are very similar to those
in Figures 11 and 12. The Amazon network result sheds some light onto why the scaling is different in the
Amazon MSE plots: the bias has a larger magnitude. Part of this is likely attributable to the fact that switching
from b = 0 to b = 0.5 changed the magnitude of the baseline outcomes, and therefore all outcomes.
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(a)

(b)

(c)

Figure 13
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(a)

(b)

(c)

Figure 14
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