Recitation 12

1. For each of the following functions, compute the derivative in 2 ways:

- Using the product/quotient/chain rules.
- Expanding/simplifying the function first, then using the power rule.

Make sure your answers match. Make a note of which method was easier for each question.
(a) $f(X)=\left(X^{3}+6\right)\left(X^{2}-3 X\right)$
(b) $f(X)=\frac{X^{2}+X-6}{X-2}$
(c) $f(X)=(X-4)^{3}$
2. In this question, we draw connections between the graph of a function and the graph of its derivative.
(a) The derivative, a function itself, tells us the (instantaneous) slope of the function at that X-value. What is the significance of the sign of the derivative (in other words, what does the function look like when its derivative is positive/negative).
(b) What is the derivative at a local minimum/maximum (sometimes called a local extremum) of a function. (It may help to draw a small sketch.)
(c) Use the ideas from parts (a) and (b) to match the functions to their derivatives.

Functions:
A.

B.

C.

D.

Derivatives:

1.

2.

3.

4.

3. Compute the derivatives of the following functions.
(a) $f(X)=\sin ^{2}(X)-\sin \left(X^{2}\right)$
(b) $g(X)=\frac{\ln (X)}{X}$
(c) $h(X)=\ln \left(\frac{1}{X}\right)$
(d) $k(X)=X^{2} e^{X} \cos (X)$
(e) $\ell(X)=e^{e^{X}}$
(f) $m(X)=\sin (X) \cos (X)$

Supplemental Questions

A. From the reading, we know that the derivative of $\cos (X)$ is $-\sin (X)$. In this exercise, we give a proof of this using the Pythagorean trig identity $\sin ^{2}(X)+\cos ^{2}(X)=1$.
(a) Rearrange this identity to solve for $\cos (X)$ in terms of $\sin (X)$.
(b) Now, take the derivative of this function of $\sin (X)$. (This will involve multiple applications of the chain rule.)
(c) Finally, use part (a) again to simplify the derivative to $-\sin (X)$.

In a similar manner, we can use different trig identities to solve for the derivatives of the remaining trig functions.
B. In this exercise, we give a derivation of the quotient rule. We can rewrite the quotient of two functions:

$$
q(X)=\frac{f(X)}{g(X)}=f(X) \cdot(g(X))^{-1}
$$

Use the product rule and the chain rule to compute $q^{\prime}(X)$.

