Probability 1

Review

An experiment is a procedure that results in an outcome. The set of all possible outcomes is called the sample space, S.

Any subset $E \subseteq S$ of possible outcomes is called an event.
A probability distribution on a countable sample space S is a function $\mathbb{P}: S \rightarrow \mathbb{R}^{+}$with $\sum_{s \in S} \mathbb{P}(s)=1$. Such a distribution is called a discrete distribution. This definition can be modified to handle uncountable sample spaces, but we don't worry about this.

The probability distribution that assigns equal probability to each outcome in S is called the uniform distribution on S. For the uniform distribution, any event $E \subseteq S$ has probability $\mathbb{P}(E)=\frac{|E|}{|S|}$.

The complementary event to an event E is the event $\bar{E}=S \backslash E$. By the properties of a probability distribution, $\mathbb{P}(\bar{E})=1-\mathbb{P}(E)$.

Conditioning is a technique for updating the probability of an event given new information by reducing the size of the sample space.

The conditional probability of an event A given another event B is given by $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.
Two event A and B are independent if the occurrence (or not) of one event does not affect the probability of the other. Mathematically, events are independent when $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

A set of events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if each pair of events is independent. A stronger condition is mutual independence, where $\mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$ for each $I \subseteq\{1, \ldots, n\}$.
Two events A and B are disjoint if $A \cap B=\emptyset$.

Suppose that A_{1}, \ldots, A_{n} are events which partition the sample space (the events are pairwise disjoint and have union S). The Law of Total Probability tells us that the probability of another event B is a weighted sum of the conditional probabilities of B given each of the events A_{i} :

$$
\mathbb{P}(B)=\mathbb{P}\left(B \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)+\ldots+\mathbb{P}\left(B \mid A_{n}\right) \mathbb{P}\left(A_{n}\right) .
$$

Bayes' Theorem is a tool that we can use to reverse the conditioning in a conditional probability. It gives,

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(A_{i} \cap B\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\mathbb{P}\left(B \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)+\ldots+\mathbb{P}\left(B \mid A_{n}\right) \mathbb{P}\left(A_{n}\right)}
$$

1. Consider an experiment where a pair of fair, 6 -sided dice, 1 red and 1 green, are rolled.
(a) Describe the sample space of this experiment.
(b) For each of the following events, describe it as a subset of the sample space, and compute its probability.
(i) $E_{1}:=$ The red dice shows 3 .
(ii) $E_{2}:=$ The green dice shows an even number.
(iii) $E_{3}:=$ The dice show the same number.
(iv) $E_{4}:=$ The sum of the dice rolls is 8 .
(v) $E_{5}:=$ The numbers on the dice differ by 2 .
(vi) $E_{6}:=$ The red dice shows a greater number than the green dice.
2. Suppose that A, B, and C are events (subsets) of a sample space S. For each of the following assertions, either argue that it is true using properties of probability, or give an example to show that it is not true.
(a) $\mathbb{P}(A) \leq \mathbb{P}(B) \Longrightarrow \mathbb{P}(\bar{B}) \leq \mathbb{P}(\bar{A})$.
(b) $\mathbb{P}(A) \leq \mathbb{P}(B) \Longrightarrow \mathbb{P}(A \cup C) \leq \mathbb{P}(B \cup C)$.
(c) $A \subseteq B \Longrightarrow \mathbb{P}(A \cup C) \leq \mathbb{P}(B \cup C)$.
(d) $\mathbb{P}(A) \leq \mathbb{P}(B) \Longrightarrow \mathbb{P}(A \backslash B) \leq \mathbb{P}(B \backslash A)$.
3. Four friends, Alice, Bob, Charlie, and Dawn, will pose side-by-side for a picture. Suppose that all possible orderings of the friends are equally likely, and consider the events:

$$
\begin{aligned}
& E_{1}:=\text { Charlie is standing next to Dawn. } \\
& E_{2}:=\text { Bob is standing next to both Alice and Charlie. } \\
& E_{3}:=\text { Alice is standing at one end. }
\end{aligned}
$$

(a) Determine the probabilities of each of these events.

$$
\begin{aligned}
& \mathbb{P}\left(E_{1}\right)= \\
& \mathbb{P}\left(E_{2}\right)= \\
& \mathbb{P}\left(E_{3}\right)=
\end{aligned}
$$

(b) Determine the probabilities of the pairwise intersections of these events.
$\mathbb{P}\left(E_{1} \cap E_{2}\right)=$
$\mathbb{P}\left(E_{2} \cap E_{3}\right)=$
$\mathbb{P}\left(E_{1} \cap E_{3}\right)=$
(c) Compute the following conditional probabilities.

$$
\begin{array}{lll}
\mathbb{P}\left(E_{1} \mid E_{2}\right):= & \mathbb{P}\left(E_{2} \mid E_{3}\right):= & \mathbb{P}\left(E_{3} \mid E_{1}\right):= \\
\mathbb{P}\left(E_{1} \mid E_{3}\right):= & \mathbb{P}\left(E_{2} \mid E_{1}\right):= & \mathbb{P}\left(E_{3} \mid E_{2}\right):=
\end{array}
$$

(d) Which pairs of events are independent?
4. Three identical boxes, each containing 2 coins, are placed on a table. One box contains 2 silver coins, one contains 2 gold coins, and the last contains 1 silver and 1 gold coin. The order of the boxes is chosen uniformly at random.
(a) Suppose that you reach your hand into the leftmost box and randomly pull out a silver coin from it. What is the probability that the other coin in this box is also silver?
(b) Challenge: Suppose that after pulling the silver coin out of the leftmost box, you pull a gold coin out of the rightmost box. Now, what is the probability that the other coin in the leftmost box is silver? (Hint: What is the sample space of this experiment?)
5. A genetic mutation affects 1 in every 1000 individuals (we'll assume that it uniformly and independently affects each individual). A test for this genetic mutation is 99 percent accurate. This means that 99 percent of tests performed on patients with the mutation have a positive result, and 99 percent of tests performed on patients without the mutation have a negative result. Define the events:

$$
\begin{aligned}
M & :=\text { A person has the mutation. } \\
T & :=\text { A person tests positive for the mutation. }
\end{aligned}
$$

(a) Calculate each of the following probabilities and give a brief English description of the event that they describe.
(i) $\quad \mathbb{P}(M)=$
(ii) $\quad \mathbb{P}(\bar{M})=$
(iii) $\quad \mathbb{P}(T \mid M)=$
(iv) $\quad \mathbb{P}(T \mid \bar{M})=$
(b) Suppose that someone takes the test and it comes back positive. What is the probability that they have the mutation?
(c) Now suppose that they take a second test and it also comes back positive. What is the probability that they have the mutation?

