
Name: ID: CS 2800 AEW

Graphs

Review

A graph is a mathematical structure consisting of a set of vertices with edges between them.

An undirected graph G is a pair (V,E) where V is a set of vertices or nodes, and E is a set of edges
between vertices, 2-sets of the form {v, v′} for v, v′ ∈ V .

Two vertices v, v′ ∈ V in an undirected graph are adjacent if {v, v′} ∈ V .

A vertex v ∈ V and an edge e ∈ E are incident if v ∈ E.

The degree of a vertex v in an undirected graph is equal to its number of incident edges.

A directed graph G is a pair (V,E) where V is a set of vertices, and E ⊆ V ×V is a set of arcs (directed
edges) between vertices.

Given a directed edge e = (u, v) ∈ E, we call the first vertex u the tail of the edge and the second vertex
v the head. We can visualize e as an arrow pointing from u to v.

Given a vertex v in a directed graph, its in-degree is the number of edges for which it is the head, and
its out-degree is the number of edges for which it is the tail.

We can visualize a graph by labeling a circle for each
of its vertices and connecting these circles with line
segments (for undirected graphs) or arrows (for di-
rected graphs) to visualize the edges. For example,
the directed graphG with vertices V = {1, 2, 3, 4} and
edges E = {(1, 2), (2, 3), (2, 4), (3, 3)} is visualized on
the right. An edge with two of the same vertices is
called a self-loop.
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A walk of length k is an alternating sequence of k + 1 vertices and k edges u, (u, v), v, (v, w), w, . . . such
that each vertex is incident to its adjacent edges in the sequence. Visually, we can trace a walk through a
graph in one continuous motion.

A walk is closed if its first and last vertices are the same. Otherwise, it is open.

A path is an open walk where all of the vertices are distinct.

A cycle is closed walk of length at least 1 where all vertices are distinct except for the first and last ones.
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1. For each of the following directed graphs, determine whether its edges represent a relation that is:

1. Reflexive 2. Irreflexive

3. Symmetric 4. Anti-symmetric

5. Transitive 6. A Partial Ordering
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2. Consider the following graph. Given an example of a:

(a) Path of length 6:

(b) Cycle:

(c) Closed walk of length 7:
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3. In this question, we’ll prove some results about the vertex degrees in an undirected graph. Throughout
the exercise, you may assume that the graph has no self-loops.

(a) Argue that the sum of degrees of all vertices in an undirected graph is even. (Hint: Perform induction
on the number of edges in the graph.)

(b) Argue that any undirected graph has an even number of vertices with odd degree. (Hint: Use part
(a).)
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4. Add edges to the following graph to form its transitive closure.
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5. Let G = (V,E) be an undirected graph. Define the connection relation R on V such that v R w if and
only if there is a walk from v to w. Argue that R is an equivalence relation on V .

The equivalence classes of R under this connection relation are called the connected components of G.
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