Graphs

Review

A graph is a mathematical structure consisting of a set of vertices with edges between them.
An undirected graph G is a pair (V, E) where V is a set of vertices or nodes, and E is a set of edges between vertices, 2-sets of the form $\left\{v, v^{\prime}\right\}$ for $v, v^{\prime} \in V$.

Two vertices $v, v^{\prime} \in V$ in an undirected graph are adjacent if $\left\{v, v^{\prime}\right\} \in V$.
A vertex $v \in V$ and an edge $e \in E$ are incident if $v \in E$.
The degree of a vertex v in an undirected graph is equal to its number of incident edges.

A directed graph G is a pair (V, E) where V is a set of vertices, and $E \subseteq V \times V$ is a set of arcs (directed edges) between vertices.

Given a directed edge $e=(u, v) \in E$, we call the first vertex u the tail of the edge and the second vertex v the head. We can visualize e as an arrow pointing from u to v.
Given a vertex v in a directed graph, its in-degree is the number of edges for which it is the head, and its out-degree is the number of edges for which it is the tail.

We can visualize a graph by labeling a circle for each of its vertices and connecting these circles with line segments (for undirected graphs) or arrows (for directed graphs) to visualize the edges. For example, the directed graph G with vertices $V=\{1,2,3,4\}$ and edges $E=\{(1,2),(2,3),(2,4),(3,3)\}$ is visualized on the right. An edge with two of the same vertices is
 called a self-loop.

A walk of length k is an alternating sequence of $k+1$ vertices and k edges $u,(u, v), v,(v, w), w, \ldots$ such that each vertex is incident to its adjacent edges in the sequence. Visually, we can trace a walk through a graph in one continuous motion.

A walk is closed if its first and last vertices are the same. Otherwise, it is open.
A path is an open walk where all of the vertices are distinct.
A cycle is closed walk of length at least 1 where all vertices are distinct except for the first and last ones.

1. For each of the following directed graphs, determine whether its edges represent a relation that is:
2. Reflexive
3. Irreflexive
4. Symmetric
5. Anti-symmetric
6. Transitive
7. A Partial Ordering

8. Consider the following graph. Given an example of a:
(a) Path of length 6:
(b) Cycle:
(c) Closed walk of length 7:

9. In this question, we'll prove some results about the vertex degrees in an undirected graph. Throughout the exercise, you may assume that the graph has no self-loops.
(a) Argue that the sum of degrees of all vertices in an undirected graph is even. (Hint: Perform induction on the number of edges in the graph.)
(b) Argue that any undirected graph has an even number of vertices with odd degree. (Hint: Use part (a).)
10. Add edges to the following graph to form its transitive closure.

11. Let $G=(V, E)$ be an undirected graph. Define the connection relation R on V such that $v R w$ if and only if there is a walk from v to w. Argue that R is an equivalence relation on V.

The equivalence classes of R under this connection relation are called the connected components of G.

