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Combinatorics 2

Review

There are many identities which describe relationships between the binomial coefficients
(
n
k

)
. One such

identity gives the symmetry, (
n

k

)
=

(
n

n− k

)
.

While it is often straightforward to prove such identities algebraically (using the factorial definition of the
binomial coefficients), it is usually more informative to provide a combinatorial proof. In such a proof,
we show that both sides of the identity are equal by arguing that they are two different ways to count the
same collection. A combinatorial proof of the above identity is that both sides count the number of subsets
of size k from n elements: we can either select the k elements to include in the set (left side) or select that
n− k elements to omit from the set (right side).

Another useful identity is Pascal’s Identity:(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

The Binomial Theorem gives us a way to more easily expand polynomial expressions.

(x+ y)n =
n∑

i=0

(
n

i

)
xiyn−i.

The Inclusion-Exclusion rule gives us a way to count the number of objects which have multiple, po-
tentially overlapping, characteristics. The simplest form of the rule is for 2 sets, which gives |A ∪ B| =
|A|+ |B| − |A ∩B|, which can be verified by looking at a Venn diagram. For a more general collection of
sets A1, A2, . . . , Ak, we have, ∣∣∣ k⋃

i=1

Ai

∣∣∣ = ∑
S⊆{1,...,k}

S ̸=∅

(−1)|S|−1
∣∣∣ ⋂
i∈S

Ai

∣∣∣.
Another common special case of the Inclusion-Exclusion rule is when k = 3. Here, we have,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

In a balls and bins problem, we wish to count the number of ways that we can place n balls into m
distinguishable bins.

If the balls are distinguishable, this amounts to selecting one of the m bins for each ball. The multiplication
rule gives mn possible arrangements.
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If the balls are indistinguishable, each arrangement depends only on the number of balls placed in each
bin. We can exhibit a bijection between the number of arrangements and the number of binary strings of
length n+m− 1 with m− 1 1’s (here, the 1s delimit the bins, and the 0s represent the balls). Therefore,
the number of arrangements is

(
n+m−1
m−1

)
.

The Pigeonhole Principle states that any function with a larger domain than codomain must map 2
domain elements to the same codomain element. Colloquially, placing n+1 pigeons into n holes results in
at least 2 pigeons in the same hole.

More generally, if f : D → C is a function with |D| > k|C|, then there is some c ∈ C with |f−1(c)| > k.

To apply the Pigeonhole Principle, it is important to specify what the “pigeons” are and what the “holes”
are in your counting scenario.

1. A fruit stand carries apples, bananas, and pears. At the stand, you can choose to purchase a fruit
basket, which includes eight pieces of fruit of your choice. In this question, we’ll determine the number
of possible baskets under various conditions. Note that baskets are equivalent if they contain the same
number of each type of fruit; the order of the fruits in the basket is irrelevant.

(a) First, we consider the case with no additional conditions (that is, the basket can have any number of
each of the fruits, as long as there are eight pieces in total). Describe a bijection between the possible
fruit baskets and the binary strings of length ten containing two 1s.

(b) Using your answer from part (a), how many such baskets of fruit are there?

(c) Next, we impose the condition that each basket must contain at least one of each type of fruit.
Describe a bijection between these baskets of fruit and the set of fruit baskets containing (any) five
pieces of fruit.
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(d) Use your answers from the previous parts to determine the number of possible fruit baskets under
the condition from part (c).

(e) Finally, suppose that the fruit stand is low on pears and says that each basket can contain at most
one pear (and the condition from part (c) no longer applies). How many different baskets are possible
now? (Hint: Consider fixing the number of pears first, and counting these cases separately. Then,
use the addition rule.)
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2. Consider the combinatorial identity,

k ·
(
n

k

)
= n ·

(
n− 1

k − 1

)
.

(a) Argue that this identity is correct algebraically (using the definition of binomial coefficients).

(b) Give a combinatorial argument for this identity.

(Hint: Consider different ways of choosing a team of k students from a class of size n and designating
one of these students the team captain.)

3. Use the binomial theorem to determine the coefficients on the following terms in the respective polyno-
mials.

(a) x3y in (x+ y)4

(b) x5y2 in (x+ y)8

(c) x4y7 in (x+ y)11
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(d) x2y3 in (2x+ y)5 (Be careful!)

(e) x8y2 in (x2 + y)6 (Be careful!)

4. How many integers between 1 and 60 are a multiple of 3 or 5? (Hint: Use the Inclusion-Exclusion
Principle)
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5. Let S be the set of strings of length 8 made up of the characters {a, b, c}.

(a) How many strings in S contain exactly 3 a’s?

(b) How many strings in S contain exactly 3 of one letter? (Hint: Use Inclusion-Exclusion and part
(a).)
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6. Use the Pigeonhole Principle to argue that any set of n+1 distinct integers from {1, 2, . . . , 2n}, contains
two consecutive integers. Be sure to specify what you are using as the pigeons and what you are using as
the holes.
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7. In this question, we’ll prove the following result using the Pigeonhole Principle:

In any undirected graph (on at least 2 vertices) with no self-loops, there are two vertices that
have the same degree.

To argue the claim, we’ll consider a graph with n vertices (for some arbitrary n ≥ 2).

(a) First, suppose that the graph contains no isolated vertices; that is, every vertex is incident to at least
one edge. Argue the claim in this case.

(b) Next, suppose that the graph contains an isolated vertices. Note that no vertex in the graph can
have degree n− 1, and use this to argue the claim in this case.

(c) Does the claim still hold if we allow self-loops?
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