Causal Inference under Low-Order Interference

SINM Symposium July 17, 2024

Mayleen Cortez-Rodriguez

Matt Eichhorn

Samir Khan

Johan Ugander

Christina Lee Yu

Talk Structure

- 1. Motivation: causal inference under interference
- 2. β -Order interactions
- 3. Estimation with Bernoulli experimental designs
- 4. Estimation with arbitrary experimental designs
- 5. Selecting an experimental design

Motivating Example: Advertising

A golf course is deciding whether to run an advertising campaign

Total Treatment Effect

Difference in *average outcome* (e.g., monthly spending at the course) under two possible *global actions*:

Everybody Treated

Nobody Treated

Randomized Experiment

Treatment Group

Control Group

*** Assume the marginal probability p of being in the treatment group is small.

Randomized Experiment

Treatment Group

Control Group

*** Assume the marginal probability p of being in the treatment group is small.

Randomized Experiment

Treatment Group

Control Group

*** Assume the marginal probability p of being in the treatment group is small.

Difference in Means Estimator:

 $\widehat{TTE}_{DM} = \begin{array}{l} \text{Average Outcome} \\ \text{in Treatment Group} \end{array} - \begin{array}{l} \text{Average Outcome} \\ \text{in Control Group} \end{array}$

Interference

Individuals' outcomes may change even if they are not treated

Interference

Individuals' outcomes may change even if they are not treated

Introduces Bias into DM Estimator

Directed Interference Graph G = (V, A)

V = n individuals

 $(j, i) \in A \Rightarrow j'$ s treatment affects *i*'s outcome

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2013.

Aronow, Peter M., and Cyrus Samii. "Estimating average causal effects under general interference, with application to a social network experiment." (2017): 1912-1947.

Directed Interference Graph G = (V, A)

V = n individuals

 $(j, i) \in A \Rightarrow j'$ s treatment affects *i*'s outcome

<u>Treatment Assignments</u> $z \in \{0,1\}^n$

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2013.

Aronow, Peter M., and Cyrus Samii. "Estimating average causal effects under general interference, with application to a social network experiment." (2017): 1912-1947.

Directed Interference Graph G = (V, A)

V = n individuals

 $(j, i) \in A \Rightarrow j'$ s treatment affects *i*'s outcome

<u>Treatment Assignments</u> $z \in \{0,1\}^n$

<u>Potential Outcomes</u> $Y_i(\mathbf{z}) : \{\mathbf{0}, \mathbf{1}\}^n \to \mathbb{R}$

* We'll assume these functions are bounded

Neighborhood Interference Assumption:

$$z_j = z'_j$$
 for all $j \in N_i \implies Y_i(\mathbf{z}) = Y_i(\mathbf{z}')$

Sussman, Daniel L., and Edoardo M. Airoldi. "Elements of estimation theory for causal effects in the presence of network interference." *arXiv preprint arXiv:1702.03578* (2017).

Directed Interference Graph G = (V, A)

V = n individuals

 $(j, i) \in A \Rightarrow j'$ s treatment affects *i*'s outcome

<u>Treatment Assignments</u> $z \in \{0,1\}^n$

<u>Potential Outcomes</u> $Y_i(\mathbf{z}) : \{\mathbf{0},\mathbf{1}\}^n \to \mathbb{R}$

* We'll assume these functions are *bounded*.

Neighborhood Interference Assumption:

$$z_j = z'_j$$
 for all $j \in N_i \implies Y_i(\mathbf{z}) = Y_i(\mathbf{z}')$

Horvitz-Thompson Estimator

$$\widehat{\text{TTE}}_{\text{HT}} = \frac{1}{n} \sum_{i=1}^{n} Y_i(\mathbf{z}) \left(\frac{\mathbb{I}(N_i \text{ fully treated})}{\Pr(N_i \text{ fully treated})} - \frac{\mathbb{I}(N_i \text{ fully untreated})}{\Pr(N_i \text{ fully untreated})} \right)$$

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." *Journal of the American statistical Association* 47.260 (1952): 663-685.

Horvitz-Thompson Estimator

$$\widehat{\text{TTE}}_{\text{HT}} = \frac{1}{n} \sum_{i=1}^{n} Y_i(\mathbf{z}) \left(\frac{\mathbb{I}(N_i \text{ fully treated})}{\Pr(N_i \text{ fully treated})} - \frac{\mathbb{I}(N_i \text{ fully untreated})}{\Pr(N_i \text{ fully untreated})} \right)$$

Under Independent Treatment Assignments $z_i \sim \text{Bernoulli}(p)$:

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." *Journal of the American statistical Association* 47.260 (1952): 663-685.

Horvitz-Thompson Estimator

$$\widehat{\text{TTE}}_{\text{HT}} = \frac{1}{n} \sum_{i=1}^{n} Y_i(\mathbf{z}) \left(\frac{\mathbb{I}(N_i \text{ fully treated})}{\Pr(N_i \text{ fully treated})} - \frac{\mathbb{I}(N_i \text{ fully untreated})}{\Pr(N_i \text{ fully untreated})} \right)$$

Under Independent Treatment Assignments $z_j \sim \text{Bernoulli}(p)$:

• Unbiased estimator

• Prohibitive $O(p^{-d})$ variance

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." *Journal of the American statistical Association* 47.260 (1952): 663-685.

Variance Reduction Strategies

1. Smarter Estimator Design

- Horvitz-Thompson Estimator ignores a lot of useful observations
- Smarter estimators incorporate measurements from partially treated neighborhoods
- Relies on structural assumptions on potential outcomes

2. Smarter Experimental Design

- Under Bernoulli treatment, most neighborhoods are partially treated
- Smarter designs increase prevalence of fully treated neighborhoods

 Relies on structural assumptions on interference network

Related Work

Network Structure

	<i>C</i> Disconnected Subcommunities	κ-Restricted Growth	Fully General	
Linear	Direction	OLS Estimation Bernoulli Design		
Generalized Linear	Direction	Feature Regression Bernoulli Design		
β -Order Interactions	Pseudoinverse Est	SNIPE Estimator Bernoulli Designs		
General Neighborhood Interference	HT Estimator Cluster Designs	HT Estimator (Randomized) Cluster Designs	HT Estimator Bernoulli Design	

β -Order Interactions

Cortez, Mayleen, **Matthew Eichhorn**, and Christina Yu. "Staggered rollout designs enable causal inference under interference without network knowledge." *Advances in Neural Information Processing Systems* 35 (2022): 7437-7449.

Cortez-Rodriguez, Mayleen, **Matthew Eichhorn**, and Christina Lee Yu. "Exploiting neighborhood interference with low-order interactions under unit randomized design." *Journal of Causal Inference* 11.1 (2023): 20220051.

Potential Outcomes under Network Interference

Since treatments are binary, $z_j \in \{0,1\}$, we can write:

$$Y_{i}(\mathbf{z}) = \sum_{T \subseteq N_{i}} a_{i,T} \prod_{j \in T} Z_{j} \prod_{j' \in N_{i} \setminus T} (1 - Z_{j'})$$

$$T \text{ fully treated } N_{i} \setminus T \text{ fully control}$$

Potential Outcomes under Network Interference

Since treatments are binary, $z_i \in \{0,1\}$, we can write:

$$Y_{i}(\mathbf{z}) = \sum_{T \subseteq N_{i}} a_{i,T} \prod_{j \in T} Z_{j} \prod_{j' \in N_{i} \setminus T} (1 - Z_{j'})$$

$$T \text{ fully treated } N_{i} \setminus T \text{ fully control}$$

Re-parameterize in the *monomial basis*:

$$Y_i(\mathbf{z}) = \sum_{S \subseteq N_i} c_{i,S} \prod_{j \in S} z_j$$

 $c_{i,S}$ = additive effect on *i* when *S* is treated (regardless of other treatments)

β -Order Interactions

Intuition: Influence comes from small subsets of neighbors

Imposes a sparsity assumption on the $c_{i,S}$ coefficients $c_{i,S} = 0$ whenever $|S| > \beta$ $Y_i(\mathbf{z}) = \sum_{\substack{S \subseteq N_i \\ |S| \le \beta}} c_{i,S} \prod_{j \in S} z_j = \sum_{\substack{S \in S_i^\beta \\ i}} c_{i,S} \ (\tilde{\mathbf{z}}_i)_S = \langle \mathbf{c}_i, \tilde{\mathbf{z}}_i \rangle$

β -Order Interactions

Intuition: Influence comes from small subsets of neighbors

Imposes a sparsity assumption on the $c_{i,S}$ coefficients $c_{i,S} = 0$ whenever $|S| > \beta$ $Y_{i}(\mathbf{z}) = \sum_{S \subseteq N_{i}} c_{i,S} \prod_{j \in S} z_{j} = \sum_{S \in S_{i}^{\beta}} c_{i,S} (\tilde{\mathbf{z}}_{i})_{S} = \langle \mathbf{c}_{i}, \tilde{\mathbf{z}}_{i} \rangle$ $|S| \leq \beta$ $(\tilde{\mathbf{z}}_i)_S = \prod_{i \in S} z_i$ indicates if *everyone* in S is treated

Example

 $Y_i(z) = c_{i,\emptyset} + c_{i,\{i\}} + c_{i,\{j\}} + c_{i,\{l\}}$ Treatment Effect Baseline

 $\beta = 1$:

Example

$$Y_{i}(z) = c_{i,\emptyset} + c_{i,\{i\}} + c_{i,\{j\}} + c_{i,\{l\}}$$

Baseline Treatment Effect

 $\beta = 1$:

 $\beta = 2$:

$$Y_{i}(z) = c_{i,\emptyset} + c_{i,\{i\}} + c_{i,\{j\}} + c_{i,\{l\}} + c_{i,\{i,l\}} + c_{i,\{j,l\}} + c_{i,\{j,l\}} + c_{i,\{j,l\}}$$

Interpr	eting β		
Most Restrictive		Ň	Most General
$oldsymbol{eta}=1$	$\beta = 2$	$oldsymbol{eta}=4$	$\boldsymbol{\beta} = \max_{i} \boldsymbol{d}_{i}$
Linear (Heterogeneous)	Dyadic Interactions	Causal Network Motifs	Arbitrary Potential Outcomes under
Outcomes Models	Outcomes depend on interactions between	Outcomes depend on treatment patterns in	Neighborhood Interference
Additive effects from treated neighbors	pairs of individuals	small graph motifs (closed/open triangles, tetrads, etc.)	

Yu, Christina Lee, et al. "Estimating the total treatment effect in randomized experiments with unknown network structure." PNAS 119.44 (2022):

Deng, Lu, et al. "Unbiased Estimation for Total Treatment Effect Under Interference Using Aggregated Dyadic Data." arXiv preprint arXiv:2402.12653 (2024).

Yuan, Yuan, Kristen Altenburger, and Farshad Kooti. "Causal network motifs: Identifying heterogeneous spillover effects in a/b tests." Proceedings of the Web Conference 2021.

Total Treatment Effect

$$TTE = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i(\mathbf{1}) - Y_i(\mathbf{0}) \right) = \frac{1}{n} \sum_{i=1}^{n} \sum_{\substack{S \subseteq N_i \\ 1 \le |S| \le \beta}} c_{i,S} = \frac{1}{n} \sum_{i=1}^{n} \langle \mathbf{c}_i, \boldsymbol{\theta}_i \rangle$$

$$(\boldsymbol{\theta}_i)_{\emptyset} = 0$$

$$(\boldsymbol{\theta}_i)_{S} = 1$$

We'll develop an estimator for each c_i that can be extended by linearity to a TTE estimator.

Estimating TTE under Bernoulli randomization

Cortez-Rodriguez, Mayleen, **Matthew Eichhorn**, and Christina Lee Yu. "Exploiting neighborhood interference with low-order interactions under unit randomized design." *Journal of Causal Inference* 11.1 (2023): 20220051.

Imagine we could replicate our randomized experiment *R* times

$$\begin{bmatrix} Y_{i}(\boldsymbol{z}^{(1)}) \\ Y_{i}(\boldsymbol{z}^{(2)}) \\ \vdots \\ Y_{i}(\boldsymbol{z}^{(R)}) \end{bmatrix} = \begin{bmatrix} \leftarrow \tilde{\boldsymbol{z}}_{i}^{(1)} \rightarrow \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(2)} \rightarrow \\ \vdots \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(R)} \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \boldsymbol{c}_{i} \\ \downarrow \end{bmatrix}$$

$$\begin{array}{c} \boldsymbol{Y}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \end{array}$$

Imagine we could replicate our randomized experiment *R* times

$$\begin{bmatrix} Y_{i}(\boldsymbol{z}^{(1)}) \\ Y_{i}(\boldsymbol{z}^{(2)}) \\ \vdots \\ Y_{i}(\boldsymbol{z}^{(R)}) \end{bmatrix} = \begin{bmatrix} \leftarrow \tilde{\boldsymbol{z}}_{i}^{(1)} \rightarrow \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(2)} \rightarrow \\ \vdots \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(R)} \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \boldsymbol{c}_{i} \\ \downarrow \end{bmatrix}$$

$$\begin{array}{c} \boldsymbol{Y}_{i} \\ \boldsymbol{Y}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i} \end{array}$$

Left-Multiply by $\frac{1}{R} (\mathbf{Z}_i^R)^{\mathsf{T}}$

Imagine we could replicate our randomized experiment *R* times

$$\begin{bmatrix} Y_{i}(\boldsymbol{z}^{(1)}) \\ Y_{i}(\boldsymbol{z}^{(2)}) \\ \vdots \\ Y_{i}(\boldsymbol{z}^{(R)}) \end{bmatrix} = \begin{bmatrix} \leftarrow \tilde{\boldsymbol{z}}_{i}^{(1)} \rightarrow \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(2)} \rightarrow \\ \vdots \\ \leftarrow \tilde{\boldsymbol{z}}_{i}^{(R)} \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \boldsymbol{c}_{i} \\ \downarrow \end{bmatrix}$$

$$\begin{array}{c} \boldsymbol{Y}_{i} \\ \boldsymbol{Y}_{i} \\ \boldsymbol{Y}_{i} \\ \boldsymbol{Y}_{i} \\ \boldsymbol{Y}_{i} \\ \boldsymbol{X}_{i} \\ \boldsymbol{X}_{i}$$

Left-Multiply by
$$\frac{1}{R} \left(\mathbf{Z}_{i}^{R} \right)^{\mathsf{T}}$$

The Design Matrix: $\mathbb{E}\left[\tilde{\boldsymbol{z}}_{i} \; \tilde{\boldsymbol{z}}_{i}^{\mathsf{T}}\right]$

Entries indexed by subsets of N_i :

$$\left(\mathbb{E}\left[\tilde{\boldsymbol{z}}_{i} \; \tilde{\boldsymbol{z}}_{i}^{\mathsf{T}}\right]\right)_{S,T} = \Pr(S \cup T \text{ fully treated})$$

*** Depends only on the experimental design, not the observed outcomes

For (independent) Bern(*p*) treatment assignments

$$\left(\mathbb{E}\left[\tilde{\boldsymbol{z}}_{i} \; \tilde{\boldsymbol{z}}_{i}^{\mathsf{T}}\right]\right)_{S,T} = p^{|S \cup T|}$$

Example:		k							
$\beta = 1$.			Ø	(1)	GD	$\beta =$	2:	(i b)	(i, b)
$\boldsymbol{p} = \mathbf{I}$ $\boldsymbol{\emptyset} \{i\} \{j\}$ $\mathbb{E} \begin{bmatrix} \tilde{\boldsymbol{z}}_i \ \tilde{\boldsymbol{z}}_i^{T} \end{bmatrix} = \begin{bmatrix} 1 & p & p \\ p & p & p^2 \\ p & p^2 & p \\ p & p^2 & p^2 \\ p & p^2 & p^2 \end{bmatrix}$	$ \begin{cases} k \\ p \\ p^2 \\ p^2 \\ p^2 \\ p^2 \\ p \\ k \end{cases} $	$\mathbb{E}\big[\tilde{\boldsymbol{z}}_i\tilde{\boldsymbol{z}}_i^{T}\big] =$	$\begin{bmatrix} 1 \\ p \\ p \\ p \\ p^2 \\ p^2 \\ p^2 \\ p^2 \end{bmatrix}$	$p \\ p \\ p^{2} \\ p^{2} \\ p^{2} \\ p^{2} \\ p^{2} \\ p^{3} $	$p \\ p^2 \\ p \\ p^2 \\ p^2 \\ p^2 \\ p^3 \\ p^2 \\ p^2$	$\{k\}$ p p^{2} p^{2} p^{3} p^{2} p^{2} p^{2}	p^{2} p^{2} p^{2} p^{3} p^{3} p^{3}	p^{2} p^{2} p^{3} p^{2} p^{3} p^{2} p^{3}	$ \begin{array}{c} p^{2} \\ p^{3} \\ p^{3} \\ i \\ p^{2} \\ j \\ p^{2} \\ k \\ p^{3} \\ p^{3} \\ i, j \\ p^{3} \\ p^{2} \\ j, k \\ p^{2} \\ j, k \\ \end{array} $

Example:		k								
						$\beta =$	2:			
$\beta = 1$:		i	Ø	<i>{i}</i>	{ <i>j</i> }	{ <i>k</i> }	{ <i>i</i> , <i>j</i> }	$\{i,k\}$	{ <i>j</i> , <i>k</i> }	
	$\{b\}$		[1	p	$p_{\mathbf{r}}$	p	p^2	p^2	p^2	Ø
	ر <i>۳</i> ک س م		p	p	p^2	p^2	p^2	p^2	p^3	<i>{i}</i>
$\begin{bmatrix} 1 & p & p \\ n & n & n^2 \end{bmatrix}$	$p \downarrow p$ $n^2 \lbrace i \rbrace$		<i>p</i>	p^2	p	p^2	p^2	p^3	p^2	{ <i>j</i> }
$\mathbb{E}\left[\tilde{\boldsymbol{z}}_{i}\tilde{\boldsymbol{z}}_{i}^{T}\right] = \begin{vmatrix} p & p & p \\ n & n^{2} & n \end{vmatrix}$	$p = {i \atop n^2} {i \atop i}$	$\mathbb{E}\left[\widetilde{\boldsymbol{z}}_{i}\widetilde{\boldsymbol{z}}_{i}^{T}\right] =$	p	p^2	p^2	p	p^3	p^2	p^2	{ <i>k</i> }
$\begin{bmatrix} p & p & p \\ n & n^2 & n^2 \end{bmatrix}$	$p \mid \{k\}$		p^2	p^2	p^2	p^3	p^2	p^3	p^3	$\{i, j\}$
	РЪ		p^2	p^2	p^3	p^2	p^3	p^2	p^3	$\{i,k\}$
			$\lfloor p^2 \rfloor$	p^3	p^2	p^2	p^3	p^3	p^2	$\{j,k\}$

Theorem: Under independent Bernoulli design, each design matrix is invertible.

 $\mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i] = \mathbb{E}\left[\, \tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}} \right] \mathbf{c}_i \qquad \Rightarrow \qquad \mathbf{c}_i = \mathbb{E}\left[\, \tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}} \right]^{-1} \mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i]$

$$\mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i] = \mathbb{E}\left[\,\tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right] \mathbf{c}_i \qquad \Rightarrow \qquad \mathbf{c}_i = \mathbb{E}\left[\,\tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right]^{-1} \mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i]$$

 $\hat{\boldsymbol{c}}_i = Y_i(\boldsymbol{z}) \mathbb{E} \left[\tilde{\boldsymbol{z}}_i \; \tilde{\boldsymbol{z}}_i^{\mathsf{T}} \right]^{-1} \tilde{\boldsymbol{z}}_i$

Replace with single realization

$$\mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i] = \mathbb{E}\left[\,\tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right] \mathbf{c}_i \qquad \Rightarrow \qquad \mathbf{c}_i = \mathbb{E}\left[\,\tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right]^{-1} \mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i]$$

 $\hat{\boldsymbol{c}}_i = Y_i(\boldsymbol{z}) \mathbb{E} \left[\tilde{\boldsymbol{z}}_i \tilde{\boldsymbol{z}}_i^{\mathsf{T}} \right]^{-1} \tilde{\boldsymbol{z}}_i$

Replace with single realization

$$\widehat{\text{TTE}} = \frac{1}{n} \sum_{i=1}^{n} \langle \hat{\mathbf{c}}_{i}, \boldsymbol{\theta}_{i} \rangle = \frac{1}{n} \sum_{i=1}^{n} Y_{i}(\mathbf{z}) \left\langle \mathbb{E} \left[\tilde{\mathbf{z}}_{i} \; \tilde{\mathbf{z}}_{i}^{\mathsf{T}} \right]^{-1} \boldsymbol{\theta}_{i}, \tilde{\mathbf{z}}_{i} \right\rangle$$

$$\mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i] = \mathbb{E}\left[\, \tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right] \mathbf{c}_i \qquad \Rightarrow \qquad \mathbf{c}_i = \mathbb{E}\left[\, \tilde{\mathbf{z}}_i \, \tilde{\mathbf{z}}_i^{\mathsf{T}}\right]^{-1} \mathbb{E}[Y_i(\mathbf{z}) \, \tilde{\mathbf{z}}_i]$$

 $\hat{\boldsymbol{c}}_i = Y_i(\boldsymbol{z}) \mathbb{E} \left[\tilde{\boldsymbol{z}}_i \; \tilde{\boldsymbol{z}}_i^{\mathsf{T}} \right]^{-1} \tilde{\boldsymbol{z}}_i$

Replace with single realization

$$\widehat{\text{TTE}} = \frac{1}{n} \sum_{i=1}^{n} \langle \hat{\mathbf{c}}_{i}, \boldsymbol{\theta}_{i} \rangle = \frac{1}{n} \sum_{i=1}^{n} Y_{i}(\mathbf{z}) \left\langle \mathbb{E} \left[\tilde{\mathbf{z}}_{i} \; \tilde{\mathbf{z}}_{i}^{\mathsf{T}} \right]^{-1} \boldsymbol{\theta}_{i}, \tilde{\mathbf{z}}_{i} \right\rangle$$

... Lots of Algebra ...

$$\widehat{\text{TTE}}_{\text{SNIPE}} = \frac{1}{n} \sum_{i=1}^{n} Y_i(\mathbf{z}) \sum_{S \in S_i^{\beta}} \left(\prod_{j \in S} \frac{z_j - p}{p} - \prod_{j \in S} \frac{z_j - p}{p - 1} \right)$$

Structured Neighborhood Interference Polynomial Estimator

Properties of the SNIPE Estimator

Unbiased

• Variance =
$$O\left(\frac{d^2}{n} \cdot \left(\frac{ed}{\beta p(1-p)}\right)^{\beta}\right)$$

- *n* = graph size
- *d* = maximum vertex degree
- β = model degree
- p = treatment probability

Properties of the SNIPE Estimator

Unbiased

• Variance =
$$O\left(\frac{d^2}{n} \cdot \left(\frac{ed}{\beta p(1-p)}\right)^{\beta}\right)$$

Interpreting the Variance:

- $\frac{1}{n}$ ensures consistency of estimator
- Polynomial scaling in d, exponential scaling in β
- Minimax $\Omega\left(\frac{1}{np^{\beta}}\right)$ lower bound on variance
- Compare with $\Theta\left(\frac{1}{np^d}\right)$ variance of HT estimator

- *n* = graph size
- *d* = maximum vertex degree
- β = model degree
- p = treatment probability

Analyzing the SNIPE Estimator

<u>Dataset</u>

- Vertices: 19,828 DVDs sold on Amazon
- Arcs: Each DVD connected to 5 most frequent co-purchases

Potential Outcomes Model

• Variation on Ugander Yin model:

$$Y_i(\mathbf{0}) = (\alpha + \beta h_i + \sigma) \cdot \frac{d_i}{\bar{d}} \qquad Y_i(\mathbf{z}) = Y_i(\mathbf{0}) \left(\delta_i z_i + \sum_{S \in S_i^\beta} \gamma_{|S|} \cdot {\binom{d_i}{|S|}}^{-1} \tilde{\mathbf{z}}_S \right)$$

Incorporates:

• Homophily, heterogeneous treatments, degree-dependent effects

Leskovec, Jure , Andrej Krevl. "SNAP Datasets: Stanford Large Network Dataset Collection." . (2014).

Ugander, Johan, and Hao Yin. "Randomized graph cluster randomization." Journal of Causal Inference 11.1 (2023): 20220014.

Analyzing the SNIPE Estimator

Analyzing the SNIPE Estimator

Estimating TTE under arbitrary experimental designs

Eichhorn, Matthew, Samir Khan, Johan Ugander, and Christina Lee Yu. "Low-order outcomes and clustered designs: combining design and analysis for causal inference under network interference." *arXiv preprint arXiv:2405.07979* (2024).

Generalizing the SNIPE Estimator

The identity $\mathbb{E}[Y_i(z) \tilde{z}_i] = \mathbb{E}[\tilde{z}_i \tilde{z}_i^{\mathsf{T}}] c_i$ holds for any experimental design

The design matrix $\mathbb{E}\left[\tilde{z}_{i} \tilde{z}_{i}^{\mathsf{T}}\right]$ may not be invertible

Use the (Moore-Penrose) pseudoinverse to estimate $\hat{c}_i = Y_i(z) \mathbb{E} [\tilde{z}_i \tilde{z}_i^{\dagger}]^{\dagger} \tilde{z}_i$

Pseudoinverse Estimator: $\widehat{\text{TTE}}_{\text{PI}} = \frac{1}{n} \sum_{i=1}^{n} Y_i(\boldsymbol{z}) \left\langle \mathbb{E} \left[\tilde{\boldsymbol{z}}_i \; \tilde{\boldsymbol{z}}_i^{\mathsf{T}} \right]^{\dagger} \boldsymbol{\theta}_i, \; \tilde{\boldsymbol{z}}_i \right\rangle$

Example: Bernoulli GCR

$$\beta = 1$$
:

PI Estimator with Bernoulli GCR Designs

Toy experiment on powers of a cycle graph

- Restricted growth graphs
- Clustering reduces error of HT Estimator

Compare against PI estimator for different values of β

Consider contiguous clusterings of various sizes w

PI Estimator with Bernoulli GCR Designs

Larger clusters = Fewer vertices with "cross cluster" neighbors (HT improves)

Larger β = Weaker Modeling Assumptions (PI gets worse, HT unaffected)

"Best of Both Worlds" Tradeoff

Theoretical Results

Bias:
$$\left|\mathbb{E}\left[\widehat{\mathrm{TTE}}_{\mathrm{PI}}\right] - \mathrm{TTE}\right| \leq O\left(\frac{1}{n}\sum_{i=1}^{n} \left\|\left(\mathbb{E}\left[\tilde{\boldsymbol{z}}_{i} \; \tilde{\boldsymbol{z}}_{i}^{\mathsf{T}}\right]^{\dagger} \mathbb{E}\left[\tilde{\boldsymbol{z}}_{i} \; \tilde{\boldsymbol{z}}_{i}^{\mathsf{T}}\right] - I\right)\theta_{i}\right\|_{2}\right)$$

Unbiased when each θ_i lies in the column space of $\mathbb{E}\left[\tilde{z}_i \tilde{z}_i^{\mathsf{T}}\right]$

Variance: $\operatorname{Var}\left(\widehat{\operatorname{TTE}}_{\operatorname{PI}}\right) \leq O\left(\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n\gamma_i\gamma_j\cdot\mathbb{I}\left(\widetilde{\mathbf{z}}_i\not\perp\widetilde{\mathbf{z}}_j\right)\right)$

 $\gamma_i = \sqrt{\left|S_i^{\beta}\right| \cdot \theta_i^{\mathsf{T}} \mathbb{E}\left[\tilde{z}_i \tilde{z}_i^{\mathsf{T}}\right]^{\dagger} \theta_i}$ measures "sensitivity" of unit *i* to randomized design

Specialized to Bernoulli GCR

- $T\widehat{T}E_{PI}$ is unbiased
- $\tilde{z}_i \not\perp \tilde{z}_j$ when *i* and *j* have neighbors in the same cluster

•
$$\gamma_i = \begin{cases} O\left(d_i^{\beta} \cdot p^{-|C(N_i)|}\right) & |C(N_i)| < \beta & \text{Stronger assumption on graph} \\ O\left(d_i^{\beta} \cdot |C(N_i)|^{\beta} \cdot p^{-\beta}\right) & |C(N_i)| \ge \beta & \text{Stronger assumption on outcomes} \end{cases}$$

Variance	Unit Randomization	Cluster Randomization				
General Interference	$\exp(d)$	$\exp(C(N_i))$				
eta-Order Interactions	$\exp(\beta)$	$\exp(\min(\beta, C(N_i)))$				

Selecting an Experimental Design

Eichhorn, Matthew, Samir Khan, Johan Ugander, and Christina Lee Yu. "Low-order outcomes and clustered designs: combining design and analysis for causal inference under network interference." *arXiv preprint arXiv:2405.07979* (2024).

Visualizing the Variance

Variance contribution of each vertex pair in a small collaboration network

$$\operatorname{Var}(\widehat{\mathrm{TTE}}_{\mathrm{PI}}) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(w_i Y_i, w_j Y_j)$$

Unit Bernoulli

Bernoulli GCR

Ryan A. Rossi, & Nesreen K. Ahmed (2015). The Network Data Repository with Interactive Graph Analytics and Visualization. In *AAAI*.

Visualizing the Variance

Variance contribution of each vertex pair in a small collaboration network

$$\operatorname{Var}(\widehat{\mathrm{TTE}}_{\mathrm{PI}}) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(w_i Y_i, w_j Y_j)$$

Unit Bernoulli

Bernoulli GCR

Contributions to the Variance Bound

$$\gamma_i \cdot \gamma_j \cdot \mathbb{I}(\tilde{\mathbf{z}}_i \perp \tilde{\mathbf{z}}_j)$$

Ryan A. Rossi, & Nesreen K. Ahmed (2015). The Network Data Repository with Interactive Graph Analytics and Visualization. In *AAAI*.

Experimental Pipeline

Example: Clustering Stochastic Block Models

At what Louvain clustering resolution does the \widehat{TTE}_{PI} estimator with Bernoulli GCR have minimum variance?

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.

Example: Clustering Stochastic Block Models

Though the theoretical bounds are loose, they capture the behavior of the estimator

Main Takeaways

- β -order interactions
 - Rich framework for modeling interference
 - Hierarchy of sparse bases for outcome parameterization
- Pseudoinverse estimators
 - Leverage outcome structure to give improvements over existing approaches
 - Can be adapted to arbitrary experimental designs
- Novel bias and variance results in terms of properties of the design
 - Provide a principled way to select an experimental design

Ongoing Question:

How can we best select a (design, estimator) pair?

Our Work:

Cortez, Mayleen, Matthew Eichhorn, and Christina Yu. "Staggered rollout designs enable causal inference under interference without network knowledge." *Advances in Neural Information Processing Systems* 35 (2022): 7437-7449.

Cortez-Rodriguez, Mayleen, Matthew Eichhorn, and Christina Lee Yu. "Exploiting neighborhood interference with low-order interactions under unit randomized design." *Journal of Causal Inference* 11.1 (2023): 20220051.

Eichhorn, Matthew, et al. "Low-order outcomes and clustered designs: combining design and analysis for causal inference under network interference." *arXiv preprint arXiv:2405.07979* (2024).

Pseudoinverse Estimators

Network interference:

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2013.

Aronow, Peter M., and Cyrus Samii. "Estimating average causal effects under general interference, with application to a social network experiment." (2017): 1912-1947.

Sussman, Daniel L., and Edoardo M. Airoldi. "Elements of estimation theory for causal effects in the presence of network interference." *arXiv preprint arXiv:1702.03578* (2017).

Regression-based estimators (green in chart):

Chin, Alex. "Regression adjustments for estimating the global treatment effect in experiments with interference." *Journal of Causal Inference* 7.2 (2019): 20180026.

Toulis, Panos, and Edward Kao. "Estimation of causal peer influence effects." International conference on machine learning. PMLR, 2013.

Basse, Guillaume W., and Edoardo M. Airoldi. "Model-assisted design of experiments in the presence of network-correlated outcomes." *Biometrika* 105.4 (2018): 849-858.

Parker, Ben M., Steven G. Gilmour, and John Schormans. "Optimal design of experiments on connected units with application to social networks." *Journal of the Royal Statistical Society Series C: Applied Statistics* 66.3 (2017): 455-480.

Novel experimental designs under general interference (purple in chart):

Tchetgen, Eric J. Tchetgen, and Tyler J. VanderWeele. "On causal inference in the presence of interference." *Statistical methods in medical research* 21.1 (2012): 55-75.

Hudgens, Michael G., and M. Elizabeth Halloran. "Toward causal inference with interference." *Journal of the American Statistical Association* 103.482 (2008): 832-842.

Rosenbaum, Paul R. "Interference between units in randomized experiments." *Journal of the american statistical association* 102.477 (2007): 191-200.

Eckles, Dean, Brian Karrer, and Johan Ugander. "Design and analysis of experiments in networks: Reducing bias from interference." *Journal of Causal Inference* 5.1 (2017): 20150021.

Ugander, Johan, and Hao Yin. "Randomized graph cluster randomization." Journal of Causal Inference 11.1 (2023): 20220014.

Horvitz-Thompson estimation (gray in chart):

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." *Journal of the American statistical Association* 47.260 (1952): 663-685.

Low-order outcomes in other work:

Yu, Christina Lee, et al. "Estimating the total treatment effect in randomized experiments with unknown network structure." *PNAS* 119.44 (2022):

Deng, Lu, et al. "Unbiased Estimation for Total Treatment Effect Under Interference Using Aggregated Dyadic Data." *arXiv preprint arXiv:2402.12653* (2024).

Yuan, Yuan, Kristen Altenburger, and Farshad Kooti. "Causal network motifs: Identifying heterogeneous spillover effects in a/b tests." *Proceedings of the Web Conference 2021*.

Experiments:

Leskovec, Jure, Andrej Krevl. "SNAP Datasets: Stanford Large Network Dataset Collection." . (2014).

Ryan A. Rossi, & Nesreen K. Ahmed (2015). The Network Data Repository with Interactive Graph Analytics and Visualization. In *AAAI*.

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." *Journal of statistical mechanics: theory and experiment* 2008.10 (2008): P10008.