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Talk Structure

1. Motivation: causal inference under interference

2. β-Order interactions

3. Estimation with Bernoulli experimental designs

4. Estimation with arbitrary experimental designs

5. Selecting an experimental design



Motivating Example: Advertising
A golf course is deciding whether to run an advertising campaign 

Public Launch

No Campaign



Total Treatment Effect
Difference in average outcome (e.g., monthly spending at the 
course) under two possible global actions:

Nobody TreatedEverybody Treated

vs.



Randomized Experiment

Control GroupTreatment Group
*** Assume the marginal probability 𝑝 of being in the treatment group is small. 



Randomized Experiment

Control GroupTreatment Group
*** Assume the marginal probability 𝑝 of being in the treatment group is small. 



Randomized Experiment

Difference in Means Estimator:

!TTE!" = 
Average Outcome 
in Treatment Group 

Average Outcome 
in Control Group -

*** Assume the marginal probability 𝑝 of being in the treatment group is small. 

Treatment Group Control Group



Interference

Individuals’ outcomes may change even if they are not treated

We haven’t golfed in 
a while… Wanna go?



Interference

Individuals’ outcomes may change even if they are not treated

We haven’t golfed in 
a while… Wanna go?

Sure!

Spillover

Introduces Bias into DM Estimator 



Modeling Interference
Directed Interference Graph  𝐺 = (𝑉, 𝐴)

𝑉 = 𝑛 individuals

𝑗, 𝑖 ∈ 𝐴 ⇒ 𝑗′s treatment affects 𝑖’s outcome

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." Proceedings of the 19th ACM 
SIGKDD international conference on Knowledge discovery and data mining. 2013.

Aronow, Peter M., and Cyrus Samii. "Estimating average causal effects under general interference, with application to a 
social network experiment." (2017): 1912-1947.
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Directed Interference Graph  𝐺 = (𝑉, 𝐴)
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Modeling Interference
Directed Interference Graph  𝐺 = (𝑉, 𝐴)

𝑉 = 𝑛 individuals

𝑗, 𝑖 ∈ 𝐴 ⇒ 𝑗′s treatment affects 𝑖’s outcome

Treatment Assignments    𝒛 ∈ {0,1}!

Potential Outcomes 𝑌" 𝒛 ∶ 	 {0,1}! 	→ 	ℝ

* We’ll assume these functions are bounded 

Neighborhood Interference Assumption: 

𝑧# = 𝑧#$  for all 𝑗 ∈ 𝑁"     ⇒ 𝑌" 𝒛 	= 𝑌" 𝒛′ 	
Sussman, Daniel L., and Edoardo M. Airoldi. "Elements of 
estimation theory for causal effects in the presence of network 
interference." arXiv preprint arXiv:1702.03578 (2017).



Modeling Interference
Directed Interference Graph  𝐺 = (𝑉, 𝐴)

𝑉 = 𝑛 individuals

𝑗, 𝑖 ∈ 𝐴 ⇒ 𝑗′s treatment affects 𝑖’s outcome

Treatment Assignments    𝒛 ∈ {0,1}!

Potential Outcomes 𝑌" 𝒛 ∶ 	 {0,1}! 	→ 	ℝ

* We’ll assume these functions are bounded. 

Neighborhood Interference Assumption: 

𝑧# = 𝑧#$  for all 𝑗 ∈ 𝑁"     ⇒ 𝑌" 𝒛 	= 𝑌" 𝒛′ 	

Total Treatment Effect: 

TTE =
1
𝑛
	=
"%&

!

𝑌" 𝟏 − 𝑌"(𝟎) 	



Horvitz-Thompson Estimator
ATTE'( =

1
𝑛
=
"%&

!

𝑌" 𝒛
𝕀(𝑁"	fully	treated)
Pr(𝑁"	fully	treated)

	−
𝕀(𝑁"	fully	untreated)
Pr(𝑁"	fully	untreated)

	

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." Journal of the 
American statistical Association 47.260 (1952): 663-685.

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." Proceedings of the 19th ACM SIGKDD 
international conference on Knowledge discovery and data mining. 2013.



Horvitz-Thompson Estimator

=
1
𝑛
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0 unless entire 
neighborhood 

treated 

0 unless entire 
neighborhood 

untreated 

Under Independent Treatment Assignments    𝑧# ∼ Bernoulli(𝑝):

ATTE'( =
1
𝑛
=
"%&
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𝑌" 𝒛
𝕀(𝑁"	fully	treated)
Pr(𝑁"	fully	treated)

	−
𝕀(𝑁"	fully	untreated)
Pr(𝑁"	fully	untreated)
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American statistical Association 47.260 (1952): 663-685.

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." Proceedings of the 19th ACM SIGKDD 
international conference on Knowledge discovery and data mining. 2013.



Horvitz-Thompson Estimator
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ATTE'( =
1
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=
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𝑌" 𝒛
𝕀(𝑁"	fully	treated)
Pr(𝑁"	fully	treated)

	−
𝕀(𝑁"	fully	untreated)
Pr(𝑁"	fully	untreated)

	

• Unbiased estimator
• Prohibitive 𝑂(𝑝-.) variance

Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." Journal of the 
American statistical Association 47.260 (1952): 663-685.

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." Proceedings of the 19th ACM SIGKDD 
international conference on Knowledge discovery and data mining. 2013.



Variance Reduction Strategies

2. Smarter Experimental Design1. Smarter Estimator Design

§ Horvitz-Thompson Estimator ignores 
a lot of useful observations

§ Smarter estimators incorporate 
measurements from partially treated 
neighborhoods

§ Relies on structural assumptions on 
potential outcomes

§ Under Bernoulli treatment, most 
neighborhoods are partially treated

§ Smarter designs increase prevalence 
of fully treated neighborhoods

§ Relies on structural assumptions on 
interference network



Related Work
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𝑪	Disconnected 
Subcommunities 𝜿-Restricted Growth Fully General

Linear

Directions for Future Work

OLS Estimation
Bernoulli Design

Generalized Linear Feature Regression
Bernoulli Design

𝜷-Order Interactions Pseudoinverse Estimators for General Designs SNIPE Estimator
Bernoulli Designs

General Neighborhood 
Interference

HT Estimator
Cluster Designs

HT Estimator
(Randomized) Cluster Designs

HT Estimator
Bernoulli Design

Many citations arranged in final bibliography



𝛽-Order Interactions 

Cortez, Mayleen, Matthew Eichhorn, and Christina Yu. "Staggered rollout designs enable causal inference under interference 
without network knowledge." Advances in Neural Information Processing Systems 35 (2022): 7437-7449.

Cortez-Rodriguez, Mayleen, Matthew Eichhorn, and Christina Lee Yu. "Exploiting neighborhood interference with low-order 
interactions under unit randomized design." Journal of Causal Inference 11.1 (2023): 20220051.



Potential Outcomes under Network Interference

𝑌! 𝒛 = &
"⊆$!

𝑎!,"(
&∈"

𝑧& (
&"∈$!∖"

(1 − 𝑧&")

Since treatments are binary, 𝑧# ∈ {0,1}, we can write: 

𝑇 fully treated 𝑁! ∖ 𝑇 fully control



Potential Outcomes under Network Interference
Since treatments are binary, 𝑧" ∈ {0,1}, we can write: 

Re-parameterize in the monomial basis:

𝑌! 𝒛 = &
)⊆$!

𝑐!,)(
&∈)

𝑧& 𝑐",7 =  additive effect on 𝑖 when 𝑆 is treated   
                  (regardless of other treatments)  

𝑌! 𝒛 = &
"⊆$!

𝑎!,"(
&∈"

𝑧& (
&"∈$!∖"

(1 − 𝑧&")

𝑇 fully treated 𝑁! ∖ 𝑇 fully control



𝛽-Order Interactions

Intuition: Influence comes from small subsets of neighbors

Imposes a sparsity assumption on the 𝑐!,#	coefficients
 𝑐!,# = 0  whenever  𝑆 > 𝛽

𝑌! 𝒛 = &
)⊆$!
) *+

𝑐!,)(
&∈)

𝑧& =	 &
)∈)!

#

𝑐!,) 	(0𝒛!))	 = 𝒄! , 0𝒛!



𝛽-Order Interactions

Intuition: Influence comes from small subsets of neighbors

Imposes a sparsity assumption on the 𝑐!,#	coefficients
 𝑐!,# = 0  whenever  𝑆 > 𝛽

𝑌! 𝒛 = &
)⊆$!
) *+

𝑐!,)(
&∈)

𝑧& =	 &
)∈)!

#

𝑐!,) 	(0𝒛!))	 = 𝒄! , 0𝒛!

(,𝒛!)# =	∏$∈# 𝑧$  indicates if everyone in 𝑆 is treated



Example 𝜷 = 𝟏:

𝑌! 𝑧 = 𝑐!,∅ + 𝑐!,{!} + 𝑐!,{$} + 𝑐!,{)}

𝑖

𝑗 𝑘

𝑙 𝑚

Treatment EffectBaseline



Example 𝜷 = 𝟏:

𝑌! 𝑧 = 𝑐!,∅ + 𝑐!,{!} + 𝑐!,{$} + 𝑐!,{)}

𝜷 = 𝟐:

𝑌! 𝑧 = 𝑐!,∅ + 𝑐!,{!} + 𝑐!,{$} + 𝑐!,{)}
                          +	𝑐!,{!,$} + 𝑐!,{!,)} + 𝑐!,{$,)}

𝑖

𝑗 𝑘

𝑙 𝑚

Treatment EffectBaseline



Interpreting 𝛽

𝜷 = 𝟏 𝜷 = 𝟐 𝜷 = 𝟒 𝜷 =	max
𝒊
𝒅𝒊

Most Restrictive Most General

Linear 
(Heterogeneous) 

Outcomes Models

Additive effects 
from treated 

neighbors

Dyadic Interactions

Outcomes depend on 
interactions between 

pairs of individuals   

Causal Network Motifs

Outcomes depend on 
treatment patterns in 

small graph motifs 
(closed/open triangles, 

tetrads, etc.)

Arbitrary Potential 
Outcomes under 

Neighborhood 
Interference

Yu, Christina Lee, et al. "Estimating the total treatment effect in randomized experiments with unknown network structure." PNAS 119.44 (2022):

Deng, Lu, et al. "Unbiased Estimation for Total Treatment Effect Under Interference Using Aggregated Dyadic Data." arXiv preprint arXiv:2402.12653 (2024).

Yuan, Yuan, Kristen Altenburger, and Farshad Kooti. "Causal network motifs: Identifying heterogeneous spillover effects in a/b tests." Proceedings of the Web Conference 2021.



Total Treatment Effect

TTE =
1
𝑛
<
!*+

,

𝑌! 𝟏 − 𝑌! 𝟎 =
1
𝑛
<
!*+

,

<
	 #⊆/!
+0 # 01

𝑐!,# =
1
𝑛
<
!*+

,

𝐜! , 𝜽!

(𝜃!)∅= 0
(𝜃!)#= 1

We’ll develop an estimator for each 𝐜!  that can be extended by 
linearity to a TTE estimator.



Estimating TTE under 
Bernoulli randomization

Cortez-Rodriguez, Mayleen, Matthew Eichhorn, and Christina Lee Yu. "Exploiting neighborhood interference with low-order 
interactions under unit randomized design." Journal of Causal Inference 11.1 (2023): 20220051.



Designing an Estimator

Imagine we could replicate our 
randomized experiment 𝑅 times

𝑌!(𝒛(+))
𝑌!(𝒛(4))

⋮
𝑌!(𝒛(5))

=

← ,𝒛!(+)→
← ,𝒛!(4)→

⋮
← ,𝒛!(5)→

↑
𝒄!
↓

𝐘𝒊 𝐙𝒊𝑹



Designing an Estimator

Imagine we could replicate our 
randomized experiment 𝑅 times

𝑌!(𝒛(+))
𝑌!(𝒛(4))

⋮
𝑌!(𝒛(5))

=
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Left-Multiply by   &> 𝐙">
⊺

1
𝑅
=
@%&

>

𝑌" 𝒛 @ ⋅ Z𝒛"
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@%&

>

Z𝒛"
@ ⋅ Z𝒛"

@ ⊺
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a.s. a.s.
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Designing an Estimator

Imagine we could replicate our 
randomized experiment 𝑅 times

𝑌!(𝒛(+))
𝑌!(𝒛(4))

⋮
𝑌!(𝒛(5))

=
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“Design Matrix”

=



The Design Matrix: 𝔼 	(𝒛5 	(𝒛5⊺

Entries indexed by subsets of 𝑁!:

𝔼 	0𝒛! 	0𝒛!⊺ )," = Pr 𝑆 ∪ 𝑇	fully	treated

*** Depends only on the experimental design, not the observed outcomes

For (independent) Bern(𝑝) treatment assignments

𝔼 	0𝒛! 	0𝒛!⊺ ),"
= 𝑝|)∪"|



Example:

𝑖

𝑗 𝑘

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝A 𝑝A

𝑝 𝑝A 𝑝 𝑝A

𝑝 𝑝A 𝑝A 𝑝

∅ {𝑖} {𝑗} {𝑘}
∅
{𝑖}

{𝑗}
{𝑘}

𝛽 = 1:



Example:

𝑖

𝑗 𝑘

𝛽 = 1:
𝛽 = 2:

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝A 𝑝A

𝑝 𝑝A 𝑝 𝑝A

𝑝 𝑝A 𝑝A 𝑝

∅ {𝑖} {𝑗} {𝑘}
∅
{𝑖}

{𝑗}
{𝑘}

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝	
𝑝 𝑝 𝑝A

𝑝 𝑝A 𝑝	

𝑝	 𝑝A

𝑝A 𝑝A

𝑝A 𝑝A

𝑝A 𝑝A

𝑝A 𝑝E

𝑝E 𝑝A

𝑝 𝑝A 𝑝A

𝑝A 𝑝A 𝑝A
𝑝	 𝑝E

𝑝E 𝑝A
𝑝A 𝑝A

𝑝E 𝑝E

𝑝A 𝑝A 𝑝E

𝑝A 𝑝E 𝑝A
𝑝A 𝑝E

𝑝A 𝑝E
𝑝A 𝑝E

𝑝E 𝑝A

∅ {𝑖} {𝑗} {𝑘} {𝑖, 𝑗} {𝑖, 𝑘} {𝑗, 𝑘}

∅
{𝑖}

{𝑗}

{𝑘}

{𝑖, 𝑗}

{𝑖, 𝑘}
{𝑗, 𝑘}



Example:

𝑖

𝑗 𝑘

𝛽 = 2:

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝A 𝑝A

𝑝 𝑝A 𝑝 𝑝A

𝑝 𝑝A 𝑝A 𝑝

∅ {𝑖} {𝑗} {𝑘}
∅
{𝑖}

{𝑗}
{𝑘}

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝	
𝑝 𝑝 𝑝A

𝑝 𝑝A 𝑝	

𝑝	 𝑝A

𝑝A 𝑝A

𝑝A 𝑝A

𝑝A 𝑝A

𝑝A 𝑝E

𝑝E 𝑝A

𝑝 𝑝A 𝑝A

𝑝A 𝑝A 𝑝A
𝑝	 𝑝E

𝑝E 𝑝A
𝑝A 𝑝A

𝑝E 𝑝E

𝑝A 𝑝A 𝑝E

𝑝A 𝑝E 𝑝A
𝑝A 𝑝E

𝑝A 𝑝E
𝑝A 𝑝E

𝑝E 𝑝A

∅ {𝑖} {𝑗} {𝑘} {𝑖, 𝑗} {𝑖, 𝑘} {𝑗, 𝑘}

∅
{𝑖}

{𝑗}

{𝑘}

{𝑖, 𝑗}

{𝑖, 𝑘}
{𝑗, 𝑘}

Theorem:   Under independent Bernoulli design, each design matrix is invertible.

𝛽 = 1:



Designing an Estimator
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Replace with single realization 𝒄̀" = 𝑌" 𝒛 	𝔼 	Z𝒛"	Z𝒛"⊺
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	Z𝒛"



Designing an Estimator

𝔼 𝑌! 𝒛 	,𝒛! = 𝔼 	,𝒛! 	,𝒛!⊺ 𝒄! 	 ⟹	 𝒄!= 𝔼 	,𝒛! 	,𝒛!⊺
7+
𝔼 𝑌! 𝒛 	,𝒛!

Replace with single realization 𝒄̀" = 𝑌" 𝒛 	𝔼 	Z𝒛"	Z𝒛"⊺
-&
	Z𝒛"
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1
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"%&

!
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1
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-&
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Designing an Estimator

𝔼 𝑌! 𝒛 	,𝒛! = 𝔼 	,𝒛! 	,𝒛!⊺ 𝒄! 	 ⟹	 𝒄!= 𝔼 	,𝒛! 	,𝒛!⊺
7+
𝔼 𝑌! 𝒛 	,𝒛!

Replace with single realization 𝒄̀" = 𝑌" 𝒛 	𝔼 	Z𝒛"	Z𝒛"⊺
-&
	Z𝒛"

ATTE =
1
𝑛=
"%&

!

𝐜̂", 𝜽" =
1
𝑛=
"%&

!

𝑌" 𝒛 𝔼 	Z𝒛"	Z𝒛"⊺
-&
𝜽",	Z𝒛"

… Lots of Algebra …

ATTEFGHIJ =
1
𝑛
=
"%&

!

𝑌" 𝒛 	 =
7∈7!

#

N
#∈7

𝑧# − 𝑝
𝑝

−N
#∈7

𝑧# − 𝑝
𝑝 − 1

Structured 
Neighborhood Interference 
Polynomial Estimator



Properties of the SNIPE Estimator
• Unbiased

• Variance = 𝑂 8"

,
⋅ 98

1: +7:

1
𝑛 = graph size
𝑑 = maximum vertex degree
𝛽	= model degree
𝑝	= treatment probability



Properties of the SNIPE Estimator
• Unbiased

• Variance = 𝑂 8"

,
⋅ 98

1: +7:

1
𝑛 = graph size
𝑑 = maximum vertex degree
𝛽	= model degree
𝑝	= treatment probability

Interpreting the Variance:

• &
! ensures consistency of estimator

• Polynomial scaling in 𝑑, exponential scaling in 𝛽

• Minimax Ω &
!,#  lower bound on variance

• Compare with Θ &
!,$  variance of HT estimator



Analyzing the SNIPE Estimator
Dataset
• Vertices: 19,828 DVDs sold on Amazon
• Arcs: Each DVD connected to 5 most frequent co-purchases

Potential Outcomes Model
• Variation on Ugander Yin model:

𝑌" 𝟎 = 𝛼 + 𝛽ℎ" + 𝜎 ⋅
𝑑"
𝑑̅

Incorporates:
• Homophily, heterogeneous treatments, degree-dependent effects

𝑌" 𝒛 = 𝑌" 𝟎 𝛿"𝑧" +	 =
7∈7!

#

𝛾 7 ⋅
𝑑"
𝑆

-&
Z𝒛7

Leskovec, Jure , Andrej Krevl. "SNAP Datasets: Stanford Large Network Dataset Collection." . (2014).

Ugander, Johan, and Hao Yin. "Randomized graph cluster randomization." Journal of Causal Inference 11.1 (2023): 20220014.



Analyzing the SNIPE Estimator



Analyzing the SNIPE Estimator



Estimating TTE under arbitrary 
experimental designs

Eichhorn, Matthew, Samir Khan, Johan Ugander, and Christina Lee Yu. "Low-order outcomes and clustered designs: combining 
design and analysis for causal inference under network interference." arXiv preprint arXiv:2405.07979 (2024).
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Randomization
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Generalizing the SNIPE Estimator
The identity     𝔼 𝑌" 𝒛 	Z𝒛" = 𝔼 	Z𝒛"	Z𝒛"⊺ 𝒄"      holds for any experimental design

The design matrix 𝔼 	Z𝒛"	Z𝒛"⊺  may not be invertible

Use the (Moore-Penrose) pseudoinverse to estimate n	𝒄" = 𝑌" 𝒛 	𝔼 	Z𝒛"	Z𝒛"⊺
K	Z𝒛"

ATTEIH =
1
𝑛
=
"%&

!

𝑌" 𝒛 𝔼 	Z𝒛"	Z𝒛"⊺
K𝜽",	Z𝒛"

Pseudoinverse Estimator:



Example: Bernoulli GCR
𝑖

𝑗 𝑘

𝛽 = 1: 𝛽 = 2:

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝 𝑝 𝑝 𝑝A 𝑝A

𝑝 𝑝 𝑝 𝑝 𝑝A 𝑝A 𝑝A

𝑝 𝑝 𝑝 𝑝 𝑝A 𝑝A 𝑝A

𝑝 𝑝 𝑝 𝑝 𝑝A 𝑝A 𝑝A

𝑝 𝑝A 𝑝A 𝑝A 𝑝 𝑝A 𝑝A

𝑝A 𝑝A 𝑝A 𝑝A 𝑝A 𝑝A 𝑝A

𝑝A 𝑝A 𝑝A 𝑝A 𝑝A 𝑝A 𝑝A

∅ {𝑖} {𝑗} {𝑘}{𝑖, 𝑗} {𝑖, 𝑘} {𝑗, 𝑘}

∅
{𝑖}

{𝑗}

{𝑘}
{𝑖, 𝑗}

{𝑖, 𝑘}
{𝑗, 𝑘}

𝔼 	Z𝒛"	Z𝒛"⊺ =

1 𝑝 𝑝 𝑝
𝑝 𝑝 𝑝 𝑝A

𝑝 𝑝 𝑝 𝑝A

𝑝 𝑝A 𝑝A 𝑝

∅ {𝑖} {𝑗} {𝑘}
∅

{𝑖}

{𝑗}

{𝑘}



PI Estimator with Bernoulli GCR Designs
Toy experiment on powers of a cycle graph
• Restricted growth graphs
• Clustering reduces error of HT Estimator

Compare against PI estimator for different values of 𝛽

Consider contiguous clusterings of various sizes 𝑤

 



PI Estimator with Bernoulli GCR Designs

Larger clusters = Fewer vertices with “cross cluster” neighbors (HT improves)

Larger 𝛽 =	Weaker Modeling Assumptions     (PI gets worse, HT unaffected)

“Best of Both Worlds” Tradeoff



Theoretical Results

𝔼 ATTEIH 	− TTE ≤ 𝑂
1
𝑛
	=
"%&

!

𝔼 	Z𝒛"	Z𝒛"⊺
K
𝔼 	Z𝒛"	Z𝒛"⊺ − 𝐼 𝜃" A

Bias:

Var ATTEIH ≤ 𝑂
1
𝑛A
	=
"%&

!

=
#%&

!

𝛾"𝛾# ⋅ 𝕀 	Z𝒛"	⊥	Z𝒛#

Variance:

Unbiased when each 𝜃" lies in the column space of 𝔼 	Z𝒛"	Z𝒛"⊺  

𝛾!	 = 𝑆!
" ⋅ 𝜃!⊺𝔼 	E𝒛!	E𝒛!⊺

$
𝜃!	 measures “sensitivity” of unit i to randomized design 



Specialized to Bernoulli GCR
• ATTEIH is unbiased

• 	Z𝒛"	⊥	Z𝒛# when 𝑖 and 𝑗 have neighbors in the same cluster

• 𝛾" =	t
𝑂 𝑑"

L ⋅ 𝑝- M *! |𝐶 𝑁" | < 	𝛽

𝑂 𝑑"
L ⋅ 𝐶 𝑁" L ⋅ 𝑝-L 𝐶 𝑁" ≥ 	𝛽

Stronger assumption on graph

Stronger assumption on outcomes

Variance Unit Randomization Cluster Randomization
General Interference exp 𝑑 exp |𝐶 𝑁" |
𝛽-Order Interactions exp 𝛽 exp min(𝛽, 𝐶 𝑁" )

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." Proceedings of the 19th ACM SIGKDD 
international conference on Knowledge discovery and data mining. 2013.



Selecting an Experimental 
Design

Eichhorn, Matthew, Samir Khan, Johan Ugander, and Christina Lee Yu. "Low-order outcomes and clustered designs: combining 
design and analysis for causal inference under network interference." arXiv preprint arXiv:2405.07979 (2024).



Visualizing the Variance
Variance contribution of each vertex 
pair in a small collaboration network

Unit Bernoulli Bernoulli GCR 

Var ATTEIH =
1
𝑛A
=
"%&

!

=
#%&

!

Cov(𝑤"𝑌", 𝑤#𝑌#)

Ryan A. Rossi, & Nesreen K. Ahmed (2015). The Network Data 
Repository with Interactive Graph Analytics and Visualization. In AAAI.



Visualizing the Variance
Variance contribution of each vertex 
pair in a small collaboration network

Unit Bernoulli Bernoulli GCR 

Var ATTEIH =
1
𝑛A
=
"%&

!

=
#%&

!

Cov(𝑤"𝑌", 𝑤#𝑌#)

Contributions to the Variance Bound

𝛾" ⋅ 𝛾# ⋅ 𝕀(Z𝒛" ⊥ Z𝒛#)

Ryan A. Rossi, & Nesreen K. Ahmed (2015). The Network Data 
Repository with Interactive Graph Analytics and Visualization. In AAAI.



Experimental Pipeline

𝐺

Design 1

Design 2

Design k

𝔼 O𝒛! O𝒛!⊺

𝔼 O𝒛! O𝒛!⊺

𝔼 O𝒛! O𝒛!⊺

Bound 1

Bound 2

Bound k

Calculate 
design 

matrices

Compute 
variance 
bounds

𝒛, 𝒀(𝒛) RTTEGH

Propose 
candidate 

designs
Construct 

interference 
network

Carry out 
best design

Apply PI 
estimator

⋮ ⋮ ⋮



Example: Clustering Stochastic Block Models
At what Louvain clustering resolution does the RTTEGH estimator 
with Bernoulli GCR have minimum variance?  

Low Resolution
Few larger clusters

More dependent vertex pairs

High Resolution
Many smaller clusters

𝛾! tend the be larger

Resolution

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.



Example: Clustering Stochastic Block Models
Though the theoretical bounds are loose, they capture the behavior of the estimator



Main Takeaways
• 𝛽-order interactions 
• Rich framework for modeling interference
• Hierarchy of sparse bases for outcome parameterization

• Pseudoinverse estimators 
• Leverage outcome structure to give improvements over existing approaches
• Can be adapted to arbitrary experimental designs

• Novel bias and variance results in terms of properties of the design
• Provide a principled way to select an experimental design

Ongoing Question: 
How can we best select a (design, estimator) pair?
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