Casual Inference with Neighborhood Interference and Low-Order Interactions

Mayleen Cortez-Rodriguez® Matthew Eichhorn* Christina Lee Yu ¢

1Center for Applied Mathematics Operations Research and Information Engineering

The Problem Our Estimator: PI(5)
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= A company runs an experiment to estimate the effectiveness of a Unbiased estimator for the TTE with variance O (dﬁ ‘ (p(ld—p)) ) siven

national ad campaign by
= The Total Treatment Effect (TTE) estimand measures the change in —— 1 — zi 1=z
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the average individual's behavior when everyone sees the ad versus oy ; 2) 5%:\/- 9(5) 1;[9 p; 1—p;
when no one does S[<p !
t's the real thing. Coke. with g, a deterministic, real-valued function chosen for unbiasedness
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Special case of the “psuedoinverse” (Pl) estimator proposed in [2]

The Horvitz-Thompson Estimator
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K\,{ . Yé\/ + | [ Nooneseesit | | — \/{7\<§ \ Contrast with unbiased network Horvitz-Thompson estimator, whose
%}f{fﬁﬁ A \@_{éﬁﬁ variance scales as ©(1/p?) [3]:
o TR, — 1 zn: Vi(2) ( [(z treats all of N})  1(z doesn’? treat all of \V;) )
= Network Interference: Word-of-mouth spreads advertiser’s n < Pr(z treats all of ;)  Pr(z doesn’t treat all of ;)
message beyond direct viewers , !
o _ .
" Interference violates the SUTVA assumption and introduces bias to = ZY@(Z) H = — H T -
classic estimators i=1 jeN P jen t TP

Formalizing the Problem

Our estimator scales polynomially in d and exponentially in 5, a

= Population: Directed graph on n clear improvement when § < d.

nodes, edges encode

interference Experiments
* Treatment: Indicated by
z € {0,1}" * Erd6s-Rényi network of n nodes with edge probability pegee = 10/n
] ]?git\;?ﬂjs; Yi(z) for each = Parameter r governs the strength of interference effects
. = Parameter p is the treatment budget
TTE = = Z (Yz’<1) — Yz‘(O)) = Compare against difference-in-means (DM) and adjusted

least-squares (LS) estimators

= Observation: Under a S-order outcomes model, our estimator PI(53)
generally outperforms other estimators w.r.t. MSE

Assumptions

1. Neighborhood Interference: Individual ¢'s outcome Y; is a function
of the treatment assignments of in-neighbors {z;} e

. B=1p=0271=2 o B =1,n=15000,p=0.2 o B =1,n=15000,r =2
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3. Bounded Effects: For each individual 7, »  |¢;s| = O(1) T oen| o T | Ll > S
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4. Known Network Structure: We have knowledge of each WV ) P e — I .
. . - (a) Varying size of the (b) Varying interference (c) Varying treatment
Bernoulli Randomized Design Sopulation ctrength budeet
Treatments sampled independently: z; ~ Bernoulli(p;) with p; € (0, 1 .
p p Y: 2 (pi) with p; € (0,1) Ongoing Work

Treatment (z;= 1)

Uniform Bernoulli Setting = Extend to other randomized designs (e.g. clustering)

= Bias-variance trade off when 3 is unknown

—Observe = Central Limit Theorem result to construct confidence intervals
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