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Motivating Example: Online Marketplace
An online marketplace wants to understand if a new product 
recommendation algorithm will increase sales

New Algorithm

Old Algorithm



Total Treatment Effect
Difference in average outcome (e.g., monthly per-user spending) 
under two possible global actions:

Nobody TreatedEverybody Treated

vs.



Randomized Experiment

Control GroupTreatment Group
*** Marginal treatment probability 𝑝 is small. 

Difference in Means Estimator:

!TTE!" = 
Average Outcome 
in Treatment Group 

Average Outcome 
in Control Group -



Interference

Individuals’ outcomes may change even if they are not treated

Hey, I just saw the 
coolest shoes!

I've been needing 
new shoes!



Modeling Interference
Directed Interference Graph  𝐺 = (𝑉, 𝐴)

𝑉 = 𝑛 individuals
𝑗, 𝑖 ∈ 𝐴 ⇒ 𝑗′s treatment affects 𝑖’s outcome

Ugander, Johan, et al. "Graph cluster randomization: Network exposure to multiple universes." 19th ACM SIGKDD international conference on Knowledge discovery 
and data mining. 2013.

Aronow, Peter M., and Cyrus Samii. "Estimating average causal effects under general interference, with application to a social network experiment." (2017).

Sussman, Daniel L., and Edoardo M. Airoldi. "Elements of estimation theory for causal effects in the presence of network interference."
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Interference Graph may be Unknown



𝛽-Order Interactions
An individual's outcome is a sum of additive effects that "turn on" when a small 
subset of their neighborhood is fully treated.

𝛽 = maximum set size that has an effect

𝑖

𝑗

𝑘 𝑙

𝑌! 𝐳 = 𝑐!,∅ + 𝑐!,{!} + 𝑐!,{&} + 𝑐!,{'}𝛽 = 1:	

𝑌! 𝐳 = 𝑐!,∅ + 𝑐!,{!} + 𝑐!,{&} + 𝑐!,{'}
                 + 𝑐!,{!,&} + 𝑐!,{!,'} + 𝑐!,{&,'}

𝛽 = 2:	

Individual SpilloversDirectBaseline

Joint Effects 
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𝑧&

𝑆	fully treated

Mayleen Cortez-Rodriguez, Matthew Eichhorn, and Christina Lee Yu. "Exploiting neighborhood interference with low-order 
interactions under unit randomized design." Journal of Causal Inference 11.1 (2023): 20220051.

Without knowledge of the interference graph, 
we can't measure these effects directly



Aggregate Measurements
If we treat each individual with marginal probability 𝑥 (e.g. under a Bernoulli or 
completely randomized design), the quantity 

𝐹 𝑥 = 	𝔼 &
!=
"%&

!

𝑌"(𝐳) = 𝔼 &
!=
"%&

!

=
'	⊆	*!
' +,

	𝑐",'J
#	∈'

𝑧#

is a polynomial in 𝑥	with degree at most 𝛽.

Mayleen Cortez-Rodriguez, Matthew Eichhorn, and Christina Lee Yu. "Staggered rollout designs enable causal inference 
under interference without network knowledge", Advances in Neural Information Processing Systems (NeurIPS), 2022.

TTE = 𝐹 1 − 𝐹(0)	



Polynomial Interpolation Estimator
Staggered Rollout Design:

• Select 𝛽 + 1 treatment levels. 

• Rollout treatment at these levels, 
measuring average outcome 
between each "ramp up".

• Interpolate a polynomial L𝐹(𝑥) 
through these points.

• Estimate MTTE/0 =	 L𝐹 1 − L𝐹(0)

Mayleen Cortez-Rodriguez, Matthew Eichhorn, and Christina Lee Yu. "Staggered rollout designs enable causal inference 
under interference without network knowledge", Advances in Neural Information Processing Systems (NeurIPS), 2022.

Marginal Treatment Probability 𝑥

0 1

𝐹(𝑥)TTE
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Marginal Treatment Probability 𝑥

0 1

𝐹(𝑥)TTE

8𝑭(𝒙)
;TTE!"

𝒑



Subsampling lets us trade 
variance for some bias. 

Polynomial Interpolation Estimator
Unbiased estimator

Extrapolation far from the 
sampled points  (𝑝	 ≪ 1) 
causes prohibitive O 𝒑<𝜷  
variance.

To respect treatment budget 
𝑝, we must "artificially"  push 
measurements to the right.

𝑝 𝑝



Subsampling (Motivation)
Imagine our interference graph splits into two, equal-sized disjoint clusters:

0 1

𝐹(𝑥)

Cluster 1 Cluster 2
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𝔼[ ;TTE!"	|	cluster	assignments] = 0 + %
&
	TTE& 

MTTE = 2P	TTE/0 𝒒 = 𝟐𝒑



Two-Stage Rollout Design

Stage 1:  Choose a set of experimental units 𝒰,	including each 
    individual with in 𝒰	with marginal probability !"

For some chosen parameter 𝑞	with 𝑝 ≤ 𝑞	 ≤ 1:

Stage 2:  Run a staggered rollout experiment:
    •  Treat a 𝑞-fraction of  individuals in 𝒰	
    •  Deterministically don't treat anyone outside of 𝒰

Estimate:    ,TTE&'()*+, = "
!	 * ( ,TTE-.	with budget 𝑞)



𝒰-Crossing edges
Edges between 𝒰	and 𝑛 \𝒰 make the picture "fuzzy" 

Crossing Edges Contribute Bias ≈	 ∑ crossing	effects  * 1	 − "
#

,<&

• Some neighbors of individuals in 𝒰	will 
be untreatable, 𝑞	overestimates the 
treatment fraction

• Some neighbors of individuals in 
𝑛 \𝒰	will be treated, their estimated 

treatment effect is not 0



Selecting 𝒰

No network knowledge: 

CRD over units

Network/Covariate knowledge: 

CRD over clusters



Variance

S$,%T%U$

V%!
,
S

W,
	 + 	 S<V

V(!&<&)
	 MVarX b𝐿X 	 + 	 𝕀(𝑞 > 𝑝) WU

%T
!&

	𝐶(𝛿 Π ) 

If we sample 𝒰 with a CRD design over 𝑛Y	equal-sized cluster, then 
MTTEW<Z[\]^	has variance bounded by:   

Extrapolation
Decreases with 𝑞

Cluster Variability
Increases with 𝑞

Crossing Effects
Increases with 𝑞

�̀�'	= Average outgoing 
treatment effect of unit 
in cluster 𝜋 

𝐶 𝛿 Π  = sum of effects 
including individuals in both 𝒰 
and its complement



Varying 𝑞

• 100 x 100 Lattice Graph

• Synthetic Potential Outcomes 
      from Ugander & Yin 
• Homophily
• Heterogenous Effect Scaling

• Treatment budget  𝑝 = 0.1
• Model order 𝛽 = 3

• Singleton Clusters (Unit Randomization)

Ugander, J. and Yin, H. (2023). Randomized graph cluster randomization. 
Journal of Causal Inference, 11(1):20220014.

𝑞



Correlating 𝒰 via clustering
Unit Randomization

𝑞

2x2 Block Clusters

𝑞

10x10 Block Clusters

𝑞



Clustering in Real-World Networks
Network of 14,436 DVDs available on Amazon
• Connected to frequent co-purchases (average degree = 6) 
• Annotated with ~13.2 out of 13,591  category labels (genre, actors, setting, etc.)

Two Ways to Cluster (METIS):

Full Knowledge: Ground truth edges
Covariate Knowledge: Using weighted feature graph   

Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007a). The dynamics of viral marketing. ACM Transactions on the Web (TWEB), 1(1):5–es.



Clustering in Real-World Networks

𝑞𝑞 𝑞

Unit Randomization Covariate Knowledge Full Graph Knowledge



Comparing to Other Estimators
Difference in Means Estimators (Orange + Red) have high bias
Hajek (Green) and Horvitz-Thompson (Not shown) have high variance
(1-Stage) Interpolation (Purple) is unbiased, but has high variance for 𝛽 > 1
2-Stage Estimator (Blue: q=0.5, Pink: q=1) without clustering has small bias, variance



Main Takeaways
• 𝛽-order interactions 

• Rich framework for modeling interference
• Rollout experiments recast estimation as polynomial fitting

• 2-Stage Interpolation 
• Vanilla interpolation estimators have high extrapolation variance
• Subsampling reduces variance, incurs some bias

• Clustered Designs
• Correlating 𝒰 reduces bias from crossing edges
• Homophily introduces trade-off in variance

More Details 
in our paper:


