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Motivation: Advertising 
A golf course is deciding whether to run an advertising campaign 
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Formalizing the Problem

▪ n individuals

▪ Treatment Assignments  𝑧𝑖 ∈ {0,1}  (0 = control, 1 = treatment)

▪ Potential Outcomes 𝑌𝑖 ത𝐳 ∶  {0,1}𝑛→ ℝ

▪ Neighborhood Interference

▪ Goal: Estimate  Total Treatment Effect

𝑇𝑇𝐸 = 1
𝑛
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A Simple Unbiased Estimator

▪ Independent Treatment Assignments    𝑧𝑗 ∼ Bernoulli(𝑝)

▪ Horvitz-Thompson Estimator 

𝑇𝑇𝐸HT = 1
𝑛
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0 unless entire 
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neighborhood 
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Prohibitively High Variance    𝑂 1

𝑝𝑑



Two Approaches for Variance Reduction
1. Better Experimental Design

▪ Under Bernoulli treatment, most 
neighborhoods are partially treated

▪ Smarter designs (e.g., with clustering) 
increases prevalence of fully treated 
neighborhoods

▪ Variance reduction relies on structural 
assumptions of causal network
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Why not both?
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Graph Cluster Randomized Design
▪ Partition a graph into 𝑘 clusters

▪ 𝒞 =  { C1, C2, … , Ck}
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▪ Sample cluster treatments  

▪ 𝑤𝐶ℓ
= 𝕀 𝐶ℓ treated  ~ Bernoulli(𝑝)

▪  Assign individual treatments 

▪ 𝑥𝑖 = 𝑤𝐶 𝑖



Variance Bounds for GCR
▪ For Bernoulli (unit randomized) Design:

Var 𝑇𝑇𝐸HT  = 𝑂 𝑛−1𝑝−𝑑

▪ For Graph Cluster Randomization:
Var 𝑇𝑇𝐸HT  = 𝑂 𝑛−1𝑝

− max
𝑖

𝒞 𝑁𝑖

J. Ugander, B. Karrer, L. Backstrom, and J. Kleinberg. Graph cluster randomization: Network exposure to multiple universes. In 
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 329–337, 2013
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“Cluster Degree”

▪ 3-Net Clustering on 𝜅-restricted growth graphs

Var 𝑇𝑇𝐸HT  = 𝑂 𝑛−1𝑑 𝜅5𝑝−𝜅6



Alternate Estimator Designs
▪ Incorporate information from partially-treated neighborhoods

▪ Need assumptions on potential outcomes



Alternate Estimator Designs
▪ Incorporate information from partially-treated neighborhoods

▪ Need assumptions on potential outcomes

▪ Low-order Interactions Model

Cortez-Rodriguez, M., Eichhorn, M., and Yu C.L., “Exploiting neighborhood interference with low order interactions
under unit randomized design”, Journal of Causal Inference (JCI), 2023.

𝑌𝑖 ത𝐳 = 

𝑆∈𝑆
𝑖
𝛽

𝑐𝑖,𝑆 ෑ

𝑗∈𝑆

𝑧𝑗 = 𝐜𝑖 , 𝐳𝑖 𝑆𝑖
𝛽

= subsets of 𝑁𝑖  with size ≤ 𝛽



The Pseudoinverse Estimator

▪ Under Low-order Interactions, we estimate ෝ𝐜𝑖 = 𝑌𝑖 ത𝐳  𝔼 𝐳𝑖 𝐳𝑖
T †
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𝑇𝑇𝐸PI = 1
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Combining these Approaches
▪ PI estimator works for any experimental design:

Main Theorem:
𝑇𝑇𝐸PI is unbiased when each 𝜃𝑖 lies in the column space of 𝔼 𝐳𝑖 𝐳𝑖

T †
with:

where 𝛾𝑖 = 𝑆𝑖
𝛽

𝜃𝑖
T𝔼 𝐳𝑖 𝐳𝑖

T †
𝜃𝑖 is 𝑖’s contribution to the variance

and 𝕀 𝐳𝑖 ⊥ 𝐳𝑗 captures the graph structure’s effect on the variance

Var 𝑇𝑇𝐸PI = 𝑂 1
𝑛2 

𝑖,𝑗∈[𝑛]

𝛾𝑖𝛾𝑗 𝕀 𝐳𝑖 ⊥ 𝐳𝑗



GCR + PI Estimator

𝛾𝑖
2 ≤ ቐ

2𝑑𝑖
𝛽

⋅ 𝑝− 𝒞 𝑁𝑖 𝒞 𝑁𝑖 < 𝛽

2 𝑑𝑖
𝛽

⋅ 𝒞 𝑁𝑖
𝛽 ⋅ 𝑝−𝛽 𝒞 𝑁𝑖 ≥ 𝛽

▪ When clustering quality “better than” potential outcomes complexity, 
variance depends exponentially on clustering quality

▪ When potential outcomes complexity is “better than” clustering quality, 
variance depends exponentially on interaction size parameter 𝛽

“Best of Both Worlds” Trade-off!



Experimental Results
▪ Cycle network with 𝑛 = 120 and degree 𝑑 = 7

▪ Effect coefficients sampled independently with 𝑐𝑖,𝑆 ∼ Unif 0,10 ⋅ 2−|𝑆|

▪ Treatment probability 𝑝 = 0.25 

▪ Cluster vertices into adjacent groups

▪ Vary cluster size 𝑘 and interaction size parameter 𝛽



Thanks for Listening!
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