

Low-Degree Outcomes and Clustered Designs: A Combined Approach for Causal Inference Under Interference

Matt Eichhorn

Samir Khan

Johan Ugander

Christina Lee Yu

A golf course is deciding whether to run an advertising campaign

Use a (small) randomized experiment to inform their decision

Treatment Group

Control Group

Use a (small) randomized experiment to inform their decision

Treatment Group

Control Group

Use a (small) randomized experiment to inform their decision

Formalizing the Problem

- *n* individuals
- Treatment Assignments $z_i \in \{0,1\}$ (0 = control, 1 = treatment)
- Potential Outcomes $Y_i(\overline{\mathbf{z}}) : \{0,1\}^n \to \mathbb{R}$
- Neighborhood Interference
- Goal: Estimate <u>Total Treatment Effect</u>

$$TTE = \frac{1}{n} \sum_{i \in [n]} (Y_i(\overline{\mathbf{1}}) - Y_i(\overline{\mathbf{0}}))$$

A Simple Unbiased Estimator

- Independent Treatment Assignments $z_i \sim \text{Bernoulli}(p)$
- Horvitz-Thompson Estimator

$$\widehat{TTE}_{\mathrm{HT}} = \frac{1}{n} \sum_{i \in [n]} Y_i(\overline{\mathbf{z}}) \left(\prod_{j \in N_i} \frac{z_j}{p} - \prod_{j \in N_i} \frac{1 - z_j}{1 - p} \right)$$

$$\bigcap_{\substack{i \in [n] \\ 0 \text{ unless entire} \\ neighborhood \\ treated}} O_{\text{ unless entire} \\ neighborhood \\ untreated}} O_{\text{ unless entire} \\ O_{\text{ unless entire} \\ neighborhood \\ untreated} O_{\text{ unless entire} \\ O_{\text{ unless entire} \\ O_{\text{ untreated}} O_{$$

Prohibitively High Variance $O\left(\frac{1}{n^d}\right)$

Two Approaches for Variance Reduction

1. Better Experimental Design

- Under Bernoulli treatment, most neighborhoods are partially treated
- Smarter designs (e.g., with clustering) increases prevalence of fully treated neighborhoods
- Variance reduction relies on structural assumptions of causal network

Two Approaches for Variance Reduction

1. Better Experimental Design

- Under Bernoulli treatment, most neighborhoods are partially treated
- Smarter designs (e.g., with clustering) increases prevalence of fully treated neighborhoods
- Variance reduction relies on structural assumptions of causal network

2. Better Estimator Design

- Horvitz-Thompson Estimator ignores a lot of useful observations
- More clever estimators can utilize measurements from partially treated neighborhoods
- Variance reduction relies on structural assumptions of **potential outcomes**

Two Approaches for Variance Reduction

1. Better Experimental Design

- Under Bernoulli treatment, most neighborhoods are partially treated
- Smarter designs (e.g., with clustering) increases prevalence of fully treated neighborhoods
- Variance reduction relies on structural assumptions of causal network

2. Better Estimator Design

- Horvitz-Thompson Estimator ignores a lot of useful observations
- More clever estimators can utilize measurements from partially treated neighborhoods
- Variance reduction relies on structural assumptions of **potential outcomes**

Why not both?

Graph Cluster Randomized Design

Graph Cluster Randomized Design

Partition a graph into k clusters

$$\mathcal{C} = \{ C_1, C_2, \dots, C_k \}$$

• C(i) = cluster of individual i

• $\mathcal{C}(N_i) = \bigcup_{j \in N_i} \mathcal{C}(j)$

Graph Cluster Randomized Design

Partition a graph into k clusters

$$\mathcal{C} = \{ C_1, C_2, \dots, C_k \}$$

• C(i) = cluster of individual i

•
$$\mathcal{C}(N_i) = \bigcup_{j \in N_i} \mathcal{C}(j)$$

- Sample cluster treatments
 - $w_{C_{\ell}} = \mathbb{I}(C_{\ell} \text{ treated}) \sim \text{Bernoulli}(p)$
- Assign individual treatments

$$x_i = w_{C(i)}$$

Variance Bounds for GCR

For Bernoulli (unit randomized) Design:

$$\operatorname{Var}(\widehat{TTE}_{\mathrm{HT}}) = O(n^{-1}p^{-d})$$

Network Degree

• For Graph Cluster Randomization: $Var(\widehat{TTE}_{HT}) = O\left(n^{-1}p^{-\max_{i}|\mathcal{C}(N_{i})|}\right)$

"Cluster Degree"

J. Ugander, B. Karrer, L. Backstrom, and J. Kleinberg. Graph cluster randomization: Network exposure to multiple universes. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 329–337, 2013

Variance Bounds for GCR

For Bernoulli (unit randomized) Design:

$$\operatorname{Var}(\widehat{TTE}_{\mathrm{HT}}) = O(n^{-1}p^{-d})$$

Network Degree

• For Graph Cluster Randomization: $Var(\widehat{TTE}_{HT}) = O\left(n^{-1}p^{-\max_{i}|\mathcal{C}(N_{i})|}\right)$

"Cluster Degree"

• 3-Net Clustering on κ -restricted growth graphs

$$\operatorname{Var}(\widehat{TTE}_{\mathrm{HT}}) = O(n^{-1}d \kappa^5 p^{-\kappa^6})$$

J. Ugander, B. Karrer, L. Backstrom, and J. Kleinberg. Graph cluster randomization: Network exposure to multiple universes. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 329–337, 2013

Alternate Estimator Designs

- Incorporate information from partially-treated neighborhoods
- Need assumptions on potential outcomes

Alternate Estimator Designs

- Incorporate information from partially-treated neighborhoods
- Need assumptions on potential outcomes
- Low-order Interactions Model

$$Y_{i}(\overline{\mathbf{z}}) = \sum_{S \in S_{i}^{\beta}} c_{i,S} \prod_{j \in S} z_{j} = \langle \mathbf{c}_{i}, \widetilde{\mathbf{z}}_{i} \rangle \qquad S_{i}^{\beta} = \text{subsets of } N_{i} \text{ with size } \leq \beta$$

The Pseudoinverse Estimator

• Under Low-order Interactions, we estimate $\widehat{\mathbf{c}}_i = Y_i(\overline{\mathbf{z}}) \mathbb{E}[\widetilde{\mathbf{z}}_i \widetilde{\mathbf{z}}_i^T]^{\mathsf{T}} \widetilde{\mathbf{z}}_i$

The Pseudoinverse Estimator

• Under Low-order Interactions, we estimate $\widehat{\mathbf{c}_i} = Y_i(\overline{\mathbf{z}}) \mathbb{E}[\widetilde{\mathbf{z}}_i \overline{\mathbf{z}}_i^{\mathrm{T}}]^{\mathsf{T}} \widetilde{\mathbf{z}}_i$

• Extend by linearity to estimate $\widehat{TTE}_{PI} = \frac{1}{n} \sum_{i \in [n]} \langle \widehat{\mathbf{c}}_i, \theta_i \rangle$ $\theta_i = (0, 1, ..., 1)$

The Pseudoinverse Estimator

• Under Low-order Interactions, we estimate $\widehat{\mathbf{c}}_i = Y_i(\overline{\mathbf{z}}) \mathbb{E}[\overline{\widetilde{\mathbf{z}}_i \widetilde{\mathbf{z}}_i^{\mathrm{T}}}]^{\mathrm{T}} \widetilde{\mathbf{z}}_i$

- Extend by linearity to estimate $\widehat{TTE}_{PI} = \frac{1}{n} \sum_{i \in [n]} \langle \widehat{\mathbf{c}}_i, \theta_i \rangle$ $\theta_i = (0, 1, ..., 1)$
- For Bernoulli (unit randomized) Design:

$$\widehat{TTE}_{\mathrm{PI}} = \frac{1}{n} \sum_{i \in [n]} Y_i(\overline{\mathbf{z}}) \sum_{S \in S_i^\beta} \left(\frac{1}{p^{|S|}} - \frac{1}{(1-p)^{|S|}} \right) \prod_{j \in S} (z_j - p)$$

nbiased with $\operatorname{Var}\left(\widehat{TTE}_{\mathrm{PI}}\right) = O\left(\frac{d^2}{n} \left(\frac{ed}{\beta p^2}\right)^\beta\right)$

Combining these Approaches

Pl estimator works for any experimental design:

Main Theorem:

 $[\widehat{TTE}_{PI}]$ is unbiased when each θ_i lies in the column space of $\mathbb{E}[\widetilde{\mathbf{z}}_i \widetilde{\mathbf{z}}_i^T]^T$ with:

$$\operatorname{Var}\left(\widehat{TTE}_{\mathrm{PI}}\right) = O\left(\frac{1}{n^2}\sum_{i,j\in[n]}\gamma_i\gamma_j \ \mathbb{I}\left(\widetilde{\mathbf{z}}_i \not\perp \widetilde{\mathbf{z}}_j\right)\right)$$

where $\gamma_i = \sqrt{\left|S_i^{\beta}\right| \theta_i^{\mathrm{T}} \mathbb{E}[\tilde{\mathbf{z}}_i \tilde{\mathbf{z}}_i^{\mathrm{T}}]^{\dagger} \theta_i}$ is *i*'s contribution to the variance and $\mathbb{I}(\tilde{\mathbf{z}}_i \neq \tilde{\mathbf{z}}_j)$ captures the graph structure's effect on the variance

GCR + PI Estimator

$$\gamma_i^2 \leq \begin{cases} 2d_i^{\beta} \cdot p^{-|\mathcal{C}(N_i)|} & |\mathcal{C}(N_i)| < \beta \\ 2d_i^{\beta} \cdot |\mathcal{C}(N_i)|^{\beta} \cdot p^{-\beta} & |\mathcal{C}(N_i)| \ge \beta \end{cases}$$

- When clustering quality "better than" potential outcomes complexity, variance depends exponentially on clustering quality
- When potential outcomes complexity is "better than" clustering quality, variance depends exponentially on interaction size parameter β

"Best of Both Worlds" Trade-off!

Experimental Results

- Cycle network with n = 120 and degree d = 7
- Effect coefficients sampled independently with $c_{i,S} \sim \text{Unif}(0,10 \cdot 2^{-|S|})$
- Treatment probability p = 0.25
- Cluster vertices into adjacent groups
- Vary cluster size k and interaction size parameter β

Horvitz-Thompson (HT) vs. Pseudoinverse (PI)

Thanks for Listening!