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Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms  

2. Patients arrive sequentially at hospital 

3. Upon Arrival, patient either:

▪ Receives a room (for entire night)
▪ Is turned away

4. How should hospital allocate rooms to:

▪ Treat as many people as possible,

▪ Never turn away the most critical patients?
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Agent Types: 𝜃𝑡 ∈ Θ

▪ Types drawn i.i.d. from known distribution 𝑃Θ

▪ Each agent has unit demand for an allocation

(12) (8) (6)
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The Online Allocation Problem
When agent 𝜃𝑡 arrives, select their allocation from 𝐶 ∪ {⊥}

Allocations Should:

▪ Respect Eligibility: Only give categories types they approve of

▪ Respect Quotas: Do not over-allocate a category 

▪ Respect Priorities: If an agent is allocated in category 𝑐, all higher priority              
           agents in 𝑐 should also be allocated

▪ Be Pareto Efficient: Allocate to the maximal extent possible
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𝛼  (T/2)

𝑎

𝑏
𝑐

𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 1
3

▪ At Start: 
▪ Only allocate to 𝑎 agents 

▪ Must guard against possibility of all 𝑎s in future

▪ After ≈ 𝟑𝑻

𝟒
 Rounds: 

▪ Have space for all remaining agents
▪ Can start accepting  𝑏 agents

▪ Cannot accept 𝑐 agents ( 𝑏 agents were 
rejected)

▪  ≈ 𝑻

𝟏𝟐
  quota goes unfilled
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Priorities as a Constraint

Theorem: If our allocations must be priority respecting in hindsight, then any online 
                     policy must incur Ω(𝑇) loss in efficiency in the worst case.  

This linear scaling in the loss is undesirable (ideally, we would like constant).

New Idea: Multi-Objective Optimization Problem

▪ Priority Loss (Δ𝑃): Number of priority violations  
                           # { 𝑡 ∶ 𝑡 unallocated, but there is 𝑡′ with 𝜃𝑡′ ≺𝑐 𝜃𝑡  allocated in 𝑐 } 

▪ Efficiency Loss (Δ𝐸):
                 # Allocations in Offline Optimum - # Allocations made by Algorithm



Aside: Computing the Offline Optimum
LP in variables 𝑥𝜃,𝑐 = # agents of type 𝜃 allocated in category 𝑐 

Maximize             σ𝜽∈𝚯 σ𝒄∈𝑪(𝟏 − 𝜹𝜽,𝒄)𝒙𝜽,𝒄                                  (Pareto efficiency) 

Subject to σ𝜽∈𝚯 𝒙𝜽,𝒄 ≤ 𝒒𝒄                ∀ 𝒄 ∈ 𝑪 (quotas)

                                  σ𝒄∈𝑪 𝒙𝜽,𝒄 ≤ 𝑵𝜽  ∀ 𝜽 ∈ 𝚯 (unit demand)

                                              𝒙𝜽,𝒄 = 𝟎                   ∀ 𝒄 ∈ 𝑪, 𝜽 ∉ 𝑬𝒄                       (eligibility)

                                              𝒙𝜽,𝒄 ≥ 𝟎                   ∀ 𝜽 ∈ 𝚯, 𝒄 ∈ 𝑪

𝛿𝜃,𝑐 chosen so  𝛿𝜃,𝑐  ≤ 𝛿𝜃′,𝑐⇔ 𝜃 ≽𝑐 𝜃′                                                   (priorities)
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Example Execution

Θ ={a,b,c,d,e}     T = 9 

𝛼 (3) 𝛾 (2)β (2)

a
b
c
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d
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Arrival Sequence: e d a a b a ac

𝛼 β 𝛾

c

e da a

b a a

b

𝛼 β 𝛾

ce

d

a a

b a

a

b

Optimal Allocation:

Δ𝑃 = 2 Δ𝐸 = 1b



Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of 
efficiency and priority loss is at most:

𝔼 Δ𝑃 + Δ𝐸 ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
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Notably, the loss is constant with respect to the instance size (T and q) 



Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of 
efficiency and priority loss is at most:

𝔼 Δ𝑃 + Δ𝐸 ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
4  

Notably, the loss is constant with respect to the instance size (T and q) 

Algorithm Idea: Use LP Sensitivity and Compensated Coupling 



The Interim LP in Round 𝒕

𝑃𝛿(𝑁𝜃 𝑡 , 𝐸𝑐 𝑡 , 𝑞𝑐 𝑡 ) 

Maximize             σ𝜃∈Θ σ𝑐∈𝐶(1 − 𝛿𝜃,𝑐)𝑥𝜃,𝑐

Subject to σ𝜃∈Θ 𝑥𝜃,𝑐 ≤ 𝑞𝑐[𝑡]                ∀ 𝑐 ∈ 𝐶 

                                  σ𝑐∈𝐶 𝑥𝜃,𝑐 ≤ 𝑁𝜃[𝑡]  ∀ 𝜃 ∈ Θ 

                                  𝑥𝜃,𝑐 = 0                        ∀ 𝑐 ∈ 𝐶, 𝜃 ∉ 𝐸𝑐[𝑡]                      

                                              𝑥𝜃,𝑐 ≥ 0                   ∀ 𝜃 ∈ Θ, 𝑐 ∈ 𝐶

𝑁 𝑡 = (expected) # of future arrivals of each type 𝜃

𝐸 𝑡 = current eligible agents in each category c

𝑞 𝑡 = remaining quota in each category 𝑐



Our Algorithm
For each Round 𝑡 ∈ 𝑇 : 

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
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Our Algorithm
For each Round 𝑡 ∈ 𝑇 : 

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
𝜃∈Θ

, (𝐸𝑐)𝑐∈𝐶 , (𝑞𝑐)𝑐∈𝐶

Expected Number of Future Arrivals of 𝜃

𝑐 ∈ 𝐶 ∪ {⊥}

If c𝑡 ∈ 𝐶 :

▪ Allocate 𝜃𝑡  to in ct

▪ 𝑞𝑐𝑡
← 𝑞𝑐𝑡

𝑡  − 1

If c𝑡 = ⊥ :

▪ Leave 𝜃𝑡  unallocated

▪ 𝐸𝑐 ← 𝐸𝑐 ∖ { 𝜃 ≺𝑐 𝜃𝑡} ∀𝑐 ∈ 𝐶

Reduce Remaining Quota Prevent Future Allocation to Lower Priority Types 

▪ 𝑐𝑡 = argmax 𝑥𝜃𝑡,𝑐
∗ [𝑡]
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Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Algorithm incurs loss only when chosen action was never taken by 𝑥𝑂𝑃𝑇[𝑡] 

If we chose to allocate:

▪ Δ𝐸 𝑡 ≤ 1

▪ Δ𝑃 𝑡 ≤ 𝑇 − 𝑡

If we chose not to allocate:

▪ Δ𝐸 𝑡 ≤ 𝑇 − 𝑡 + 1

▪ Δ𝑃 𝑡 ≤ 1

In all,     Δ 𝑡 = 𝑇 − 𝑡 + 2 ⋅ Pr chosen action never taken

Δ 𝑡 = loss incurred from the decision in round 𝑡
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Algorithm takes most common action when expected number of each type arrives 

𝔼[Δ 𝑡 ] ≤ 𝑇 − 𝑡 + 2 ⋅ 2 Θ exp 2𝑝𝑚𝑖𝑛
2(𝑇−𝑡)
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Algorithm incurs loss only when this action is never taken 

For this to occur, our LP solution 𝑥∗ 𝑡  must vary a lot from 𝑥𝑂𝑃𝑇[𝑡]

Solutions to our LP are 1-Lipschitz in RHS

➢  Actual number of arrivals must vary widely from expected number of arrivals 

𝔼 Δ𝑃 + Δ𝐸 = σ𝑡∈ 𝑇 𝔼[Δ 𝑡 ] ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
4  
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Improving this Bound

While our bound is constant, it depends on Θ , 𝐶 , and 𝑝𝑚𝑖𝑛  

𝔼 Δ𝑃 + Δ𝐸 ≤
12 Θ 5

𝑝𝑚𝑖𝑛
4  

To remove dependence on 𝐶 , slightly modify problem

▪ Decide online whether to allocate an agent

▪ After all arrivals, decide which category each allocation comes from

Improved bound: 

Ongoing work to remove dependence on other parameters



Thanks For Listening!
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