
Online Allocation with Priorities and Quotas

Sid Banerjee Matt Eichhorn David Kempe

Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms

Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms

2. Patients arrive sequentially at hospital

Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms

2. Patients arrive sequentially at hospital

3. Upon Arrival, patient either:

▪ Receives a room (for entire night)

Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms

2. Patients arrive sequentially at hospital

3. Upon Arrival, patient either:

▪ Receives a room (for entire night)
▪ Is turned away

Motivation: Hospital Triage

1. At start of night shift, hospital has available rooms

2. Patients arrive sequentially at hospital

3. Upon Arrival, patient either:

▪ Receives a room (for entire night)
▪ Is turned away

4. How should hospital allocate rooms to:

▪ Treat as many people as possible,

▪ Never turn away the most critical patients?

Formalizing the Setting
T = Number of arriving agents (known)

Formalizing the Setting
T = Number of arriving agents (known)

Agent Types: 𝜃𝑡 ∈ Θ

▪ Types drawn i.i.d. from known distribution 𝑃Θ

▪ Each agent has unit demand for an allocation

Θ ={ , , , , }

Formalizing the Setting
T = Number of arriving agents (known)

Agent Types: 𝜃𝑡 ∈ Θ

▪ Types drawn i.i.d. from known distribution 𝑃Θ

▪ Each agent has unit demand for an allocation

Θ ={ , , , , }

Categories: 𝑐 ∈ 𝐶 with

▪ Quota 𝑞𝑐 of units to allocate

▪ Eligible Types 𝐸𝑐⊆ Θ

▪ Priority Order ≽𝑐 over eligible types

▪ 𝜃 ≽𝑐 𝜃′means 𝜃 has priority over 𝜃′ in 𝑐

Formalizing the Setting
T = Number of arriving agents (known)

Categories: 𝑐 ∈ 𝐶 with

▪ Quota 𝑞𝑐 of units to allocate

▪ Eligible Types 𝐸𝑐⊆ Θ

▪ Priority Order ≽𝑐 over eligible types

▪ 𝜃 ≽𝑐 𝜃′means 𝜃 has priority over 𝜃′ in 𝑐

Agent Types: 𝜃𝑡 ∈ Θ

▪ Types drawn i.i.d. from known distribution 𝑃Θ

▪ Each agent has unit demand for an allocation

(12) (8) (6)

Θ ={ , , , , }

The Online Allocation Problem
When agent 𝜃𝑡 arrives, select their allocation from 𝐶 ∪ {⊥}

The Online Allocation Problem
When agent 𝜃𝑡 arrives, select their allocation from 𝐶 ∪ {⊥}

Allocations Should:

▪ Respect Eligibility: Only give categories types they approve of

▪ Respect Quotas: Do not over-allocate a category

The Online Allocation Problem
When agent 𝜃𝑡 arrives, select their allocation from 𝐶 ∪ {⊥}

Allocations Should:

▪ Respect Eligibility: Only give categories types they approve of

▪ Respect Quotas: Do not over-allocate a category

▪ Respect Priorities: If an agent is allocated in category 𝑐, all higher-priority
 agents in 𝑐 should also be allocated

The Online Allocation Problem
When agent 𝜃𝑡 arrives, select their allocation from 𝐶 ∪ {⊥}

Allocations Should:

▪ Respect Eligibility: Only give categories types they approve of

▪ Respect Quotas: Do not over-allocate a category

▪ Respect Priorities: If an agent is allocated in category 𝑐, all higher priority
 agents in 𝑐 should also be allocated

▪ Be Pareto Efficient: Allocate to the maximal extent possible

Priorities as a Constraint
Only allocate if it cannot cause a priority violation, maximize number of allocations

Priorities as a Constraint
Only allocate if it cannot cause a priority violation, maximize number of allocations

𝛼 (T/2)

𝑎

𝑏
𝑐

𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 1
3

Priorities as a Constraint
Only allocate if it cannot cause a priority violation, maximize number of allocations

𝛼 (T/2)

𝑎

𝑏
𝑐

𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 1
3

▪ At Start:
▪ Only allocate to 𝑎 agents

▪ Must guard against possibility of all 𝑎s in future

Priorities as a Constraint
Only allocate if it cannot cause a priority violation, maximize number of allocations

𝛼 (T/2)

𝑎

𝑏
𝑐

𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 1
3

▪ At Start:
▪ Only allocate to 𝑎 agents

▪ Must guard against possibility of all 𝑎s in future

▪ After ≈ 𝟑𝑻

𝟒
 Rounds:

▪ Have space for all remaining agents
▪ Can start accepting 𝑏 agents

▪ Cannot accept 𝑐 agents (𝑏 agents were
rejected)

▪ ≈ 𝑻

𝟏𝟐
 quota goes unfilled

Priorities as a Constraint

Theorem: If our allocations must be priority respecting in hindsight, then any online
 policy must incur Ω(𝑇) loss in efficiency in the worst case.

This linear scaling in the loss is undesirable (ideally, we would like constant).

Priorities as a Constraint

Theorem: If our allocations must be priority respecting in hindsight, then any online
 policy must incur Ω(𝑇) loss in efficiency in the worst case.

This linear scaling in the loss is undesirable (ideally, we would like constant).

New Idea: Multi-Objective Optimization Problem

▪ Priority Loss (Δ𝑃): Number of priority violations
 # { 𝑡 ∶ 𝑡 unallocated, but there is 𝑡′ with 𝜃𝑡′ ≺𝑐 𝜃𝑡 allocated in 𝑐 }

▪ Efficiency Loss (Δ𝐸):
 # Allocations in Offline Optimum - # Allocations made by Algorithm

Aside: Computing the Offline Optimum
LP in variables 𝑥𝜃,𝑐 = # agents of type 𝜃 allocated in category 𝑐

Maximize σ𝜽∈𝚯 σ𝒄∈𝑪(𝟏 − 𝜹𝜽,𝒄)𝒙𝜽,𝒄 (Pareto efficiency)

Subject to σ𝜽∈𝚯 𝒙𝜽,𝒄 ≤ 𝒒𝒄 ∀ 𝒄 ∈ 𝑪 (quotas)

 σ𝒄∈𝑪 𝒙𝜽,𝒄 ≤ 𝑵𝜽 ∀ 𝜽 ∈ 𝚯 (unit demand)

 𝒙𝜽,𝒄 = 𝟎 ∀ 𝒄 ∈ 𝑪, 𝜽 ∉ 𝑬𝒄 (eligibility)

 𝒙𝜽,𝒄 ≥ 𝟎 ∀ 𝜽 ∈ 𝚯, 𝒄 ∈ 𝑪

𝛿𝜃,𝑐 chosen so 𝛿𝜃,𝑐 ≤ 𝛿𝜃′,𝑐⇔ 𝜃 ≽𝑐 𝜃′ (priorities)

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence:

𝛼 β 𝛾

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e

𝛼 β 𝛾

e

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d

𝛼 β 𝛾

e d

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a

𝛼 β 𝛾

e da

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a

𝛼 β 𝛾

e da a

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b

𝛼 β 𝛾

e da a

b

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b c

𝛼 β 𝛾

c

e da a

b

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b ac

𝛼 β 𝛾

c

e da a

b a

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b a ac

𝛼 β 𝛾

c

e da a

b a a

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b a ac

𝛼 β 𝛾

c

e da a

b a a

b

b

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b a ac

𝛼 β 𝛾

c

e da a

b a a

b

𝛼 β 𝛾

ce

d

a a

b a

a

b

Optimal Allocation:

b

Example Execution

Θ ={a,b,c,d,e} T = 9

𝛼 (3) 𝛾 (2)β (2)

a
b
c

a
d

e
d

Arrival Sequence: e d a a b a ac

𝛼 β 𝛾

c

e da a

b a a

b

𝛼 β 𝛾

ce

d

a a

b a

a

b

Optimal Allocation:

Δ𝑃 = 2 Δ𝐸 = 1b

Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of
efficiency and priority loss is at most:

𝔼 Δ𝑃 + Δ𝐸 ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
4

Notably, the loss is constant with respect to the instance size (T and q)

Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of
efficiency and priority loss is at most:

𝔼 Δ𝑃 + Δ𝐸 ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
4

Notably, the loss is constant with respect to the instance size (T and q)

Algorithm Idea: Use LP Sensitivity and Compensated Coupling

The Interim LP in Round 𝒕

𝑃𝛿(𝑁𝜃 𝑡 , 𝐸𝑐 𝑡 , 𝑞𝑐 𝑡)

Maximize σ𝜃∈Θ σ𝑐∈𝐶(1 − 𝛿𝜃,𝑐)𝑥𝜃,𝑐

Subject to σ𝜃∈Θ 𝑥𝜃,𝑐 ≤ 𝑞𝑐[𝑡] ∀ 𝑐 ∈ 𝐶

 σ𝑐∈𝐶 𝑥𝜃,𝑐 ≤ 𝑁𝜃[𝑡] ∀ 𝜃 ∈ Θ

 𝑥𝜃,𝑐 = 0 ∀ 𝑐 ∈ 𝐶, 𝜃 ∉ 𝐸𝑐[𝑡]

 𝑥𝜃,𝑐 ≥ 0 ∀ 𝜃 ∈ Θ, 𝑐 ∈ 𝐶

𝑁 𝑡 = (expected) # of future arrivals of each type 𝜃

𝐸 𝑡 = current eligible agents in each category c

𝑞 𝑡 = remaining quota in each category 𝑐

Our Algorithm
For each Round 𝑡 ∈ 𝑇 :

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
𝜃∈Θ

, (𝐸𝑐)𝑐∈𝐶 , (𝑞𝑐)𝑐∈𝐶

Expected Number of Future Arrivals of 𝜃

Our Algorithm
For each Round 𝑡 ∈ 𝑇 :

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
𝜃∈Θ

, (𝐸𝑐)𝑐∈𝐶 , (𝑞𝑐)𝑐∈𝐶

Expected Number of Future Arrivals of 𝜃

𝑐 ∈ 𝐶 ∪ {⊥}

▪ 𝑐𝑡 = argmax 𝑥𝜃𝑡,𝑐
∗ [𝑡]

Our Algorithm
For each Round 𝑡 ∈ 𝑇 :

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
𝜃∈Θ

, (𝐸𝑐)𝑐∈𝐶 , (𝑞𝑐)𝑐∈𝐶

Expected Number of Future Arrivals of 𝜃

𝑐 ∈ 𝐶 ∪ {⊥}

If c𝑡 ∈ 𝐶 :

▪ Allocate 𝜃𝑡 to in 𝑐𝑡

▪ 𝑞𝑐𝑡
← 𝑞𝑐𝑡

𝑡 − 1

Reduce Remaining Quota

▪ 𝑐𝑡 = argmax 𝑥𝜃𝑡,𝑐
∗ [𝑡]

Our Algorithm
For each Round 𝑡 ∈ 𝑇 :

𝑥∗[𝑡] = solution to 𝑃𝛿 𝑝𝜃 𝑇 − 𝑡 + 𝕀 𝜃𝑡 = 𝜃
𝜃∈Θ

, (𝐸𝑐)𝑐∈𝐶 , (𝑞𝑐)𝑐∈𝐶

Expected Number of Future Arrivals of 𝜃

𝑐 ∈ 𝐶 ∪ {⊥}

If c𝑡 ∈ 𝐶 :

▪ Allocate 𝜃𝑡 to in ct

▪ 𝑞𝑐𝑡
← 𝑞𝑐𝑡

𝑡 − 1

If c𝑡 = ⊥ :

▪ Leave 𝜃𝑡 unallocated

▪ 𝐸𝑐 ← 𝐸𝑐 ∖ { 𝜃 ≺𝑐 𝜃𝑡} ∀𝑐 ∈ 𝐶

Reduce Remaining Quota Prevent Future Allocation to Lower Priority Types

▪ 𝑐𝑡 = argmax 𝑥𝜃𝑡,𝑐
∗ [𝑡]

Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Δ 𝑡 = loss incurred from the decision in round 𝑡

Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Algorithm incurs loss only when chosen action was never taken by 𝑥𝑂𝑃𝑇[𝑡]

Δ 𝑡 = loss incurred from the decision in round 𝑡

Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Algorithm incurs loss only when chosen action was never taken by 𝑥𝑂𝑃𝑇[𝑡]

If we chose to allocate:

▪ Δ𝐸 𝑡 ≤ 1

▪ Δ𝑃 𝑡 ≤ 𝑇 − 𝑡

Δ 𝑡 = loss incurred from the decision in round 𝑡

Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Algorithm incurs loss only when chosen action was never taken by 𝑥𝑂𝑃𝑇[𝑡]

If we chose to allocate:

▪ Δ𝐸 𝑡 ≤ 1

▪ Δ𝑃 𝑡 ≤ 𝑇 − 𝑡

If we chose not to allocate:

▪ Δ𝐸 𝑡 ≤ 𝑇 − 𝑡 + 1

▪ Δ𝑃 𝑡 ≤ 1

Δ 𝑡 = loss incurred from the decision in round 𝑡

Compensating for Mistakes
𝑥𝑂𝑃𝑇[𝑡] = hindsight optimal allocation in remaining rounds given past actions

Algorithm incurs loss only when chosen action was never taken by 𝑥𝑂𝑃𝑇[𝑡]

If we chose to allocate:

▪ Δ𝐸 𝑡 ≤ 1

▪ Δ𝑃 𝑡 ≤ 𝑇 − 𝑡

If we chose not to allocate:

▪ Δ𝐸 𝑡 ≤ 𝑇 − 𝑡 + 1

▪ Δ𝑃 𝑡 ≤ 1

In all, Δ 𝑡 = 𝑇 − 𝑡 + 2 ⋅ Pr chosen action never taken

Δ 𝑡 = loss incurred from the decision in round 𝑡

LP Sensitivity
Algorithm takes most common action when expected number of each type arrives
Algorithm incurs loss only when this action is never taken

LP Sensitivity
Algorithm takes most common action when expected number of each type arrives
Algorithm incurs loss only when this action is never taken

For this to occur, our LP solution 𝑥∗ 𝑡 must vary a lot from 𝑥𝑂𝑃𝑇[𝑡]

Solutions to our LP are 1-Lipschitz in RHS

➢ Actual number of arrivals must vary widely from expected number of arrivals

LP Sensitivity
Algorithm takes most common action when expected number of each type arrives

𝔼[Δ 𝑡] ≤ 𝑇 − 𝑡 + 2 ⋅ 2 Θ exp 2𝑝𝑚𝑖𝑛
2(𝑇−𝑡)

Θ 2 𝐶 +1 2

Algorithm incurs loss only when this action is never taken

For this to occur, our LP solution 𝑥∗ 𝑡 must vary a lot from 𝑥𝑂𝑃𝑇[𝑡]

Solutions to our LP are 1-Lipschitz in RHS

➢ Actual number of arrivals must vary widely from expected number of arrivals

LP Sensitivity
Algorithm takes most common action when expected number of each type arrives

𝔼[Δ 𝑡] ≤ 𝑇 − 𝑡 + 2 ⋅ 2 Θ exp 2𝑝𝑚𝑖𝑛
2(𝑇−𝑡)

Θ 2 𝐶 +1 2

Algorithm incurs loss only when this action is never taken

For this to occur, our LP solution 𝑥∗ 𝑡 must vary a lot from 𝑥𝑂𝑃𝑇[𝑡]

Solutions to our LP are 1-Lipschitz in RHS

➢ Actual number of arrivals must vary widely from expected number of arrivals

𝔼 Δ𝑃 + Δ𝐸 = σ𝑡∈ 𝑇 𝔼[Δ 𝑡] ≤
Θ 5 𝐶 +1 4

𝑝𝑚𝑖𝑛
4

Improving this Bound

While our bound is constant, it depends on Θ , 𝐶 , and 𝑝𝑚𝑖𝑛

Improving this Bound

While our bound is constant, it depends on Θ , 𝐶 , and 𝑝𝑚𝑖𝑛

To remove dependence on 𝐶 , slightly modify problem

▪ Decide online whether to allocate an agent

▪ After all arrivals, decide which category each allocation comes from

Improving this Bound

While our bound is constant, it depends on Θ , 𝐶 , and 𝑝𝑚𝑖𝑛

𝔼 Δ𝑃 + Δ𝐸 ≤
12 Θ 5

𝑝𝑚𝑖𝑛
4

To remove dependence on 𝐶 , slightly modify problem

▪ Decide online whether to allocate an agent

▪ After all arrivals, decide which category each allocation comes from

Improved bound:

Improving this Bound

While our bound is constant, it depends on Θ , 𝐶 , and 𝑝𝑚𝑖𝑛

𝔼 Δ𝑃 + Δ𝐸 ≤
12 Θ 5

𝑝𝑚𝑖𝑛
4

To remove dependence on 𝐶 , slightly modify problem

▪ Decide online whether to allocate an agent

▪ After all arrivals, decide which category each allocation comes from

Improved bound:

Ongoing work to remove dependence on other parameters

Thanks For Listening!

	Slide 1: Online Allocation with Priorities and Quotas
	Slide 2: Motivation: Hospital Triage
	Slide 3: Motivation: Hospital Triage
	Slide 4: Motivation: Hospital Triage
	Slide 5: Motivation: Hospital Triage
	Slide 6: Motivation: Hospital Triage
	Slide 7: Formalizing the Setting
	Slide 8: Formalizing the Setting
	Slide 9: Formalizing the Setting
	Slide 10: Formalizing the Setting
	Slide 11: The Online Allocation Problem
	Slide 12: The Online Allocation Problem
	Slide 13: The Online Allocation Problem
	Slide 14: The Online Allocation Problem
	Slide 15: Priorities as a Constraint
	Slide 16: Priorities as a Constraint
	Slide 17: Priorities as a Constraint
	Slide 18: Priorities as a Constraint
	Slide 19: Priorities as a Constraint
	Slide 20: Priorities as a Constraint
	Slide 21: Aside: Computing the Offline Optimum
	Slide 22: Example Execution
	Slide 23: Example Execution
	Slide 24: Example Execution
	Slide 25: Example Execution
	Slide 26: Example Execution
	Slide 27: Example Execution
	Slide 28: Example Execution
	Slide 29: Example Execution
	Slide 30: Example Execution
	Slide 31: Example Execution
	Slide 32: Example Execution
	Slide 33: Example Execution
	Slide 34: Achieving Constant Expected Loss
	Slide 35: Achieving Constant Expected Loss
	Slide 36: The Interim LP in Round t
	Slide 37: Our Algorithm
	Slide 38: Our Algorithm
	Slide 39: Our Algorithm
	Slide 40: Our Algorithm
	Slide 41: Compensating for Mistakes
	Slide 42: Compensating for Mistakes
	Slide 43: Compensating for Mistakes
	Slide 44: Compensating for Mistakes
	Slide 45: Compensating for Mistakes
	Slide 46: LP Sensitivity
	Slide 47: LP Sensitivity
	Slide 48: LP Sensitivity
	Slide 49: LP Sensitivity
	Slide 50: Improving this Bound
	Slide 51: Improving this Bound
	Slide 52: Improving this Bound
	Slide 53: Improving this Bound
	Slide 54: Thanks For Listening!

