Online Allocation with Priorities and Quotas
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Motivation: Hospital Triage
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1. At start of night shift, hospital has available rooms

2. Patients arrive sequentially at hospital

3. Upon Arrival, patient either:

=  Receives aroom (for entire night)
= |sturned away

4. How should hospital allocate rooms to:
= Treatas many people as possible,

= Neverturn away the most critical patients?
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= Priority Order = over eligible types
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The Online Allocation Problem

When agent 0, arrives, select their allocation from C U {1}

Allocations Should:

= Respect Eligibility: Only give categories types they approve of

= Respect Quotas: Do not over-allocate a category

= Respect Priorities: If an agent is allocated in category c, all higher priority
agents in ¢ should also be allocated

= Be Pareto Efficient: Allocate to the maximal extent possible




Priorities as a Constraint

Only allocate if it cannot cause a priority violation, maximize number of allocations



Priorities as a Constraint

Only allocate if it cannot cause a priority violation, maximize number of allocations

X (1/2)

a

b
C

—

Pa-SeEbl e e wia



Priorities as a Constraint

Only allocate if it cannot cause a priority violation, maximize number of allocations

= At Start:
U (7/2) = Only allocate to @ agents
a = Must guard against possibility of all d's in future
C
i =il -
Do by e et 3



Priorities as a Constraint

Only allocate if it cannot cause a priority violation, maximize number of allocations

= AtStart:
U (7/2) = Only allocate to @ agents
a = Must guard against possibility of all d's in future
b = After= %T Rounds:
= Have space for all remaining agents
¢ = Can startaccepting b agents
g, A :% = Cannot accept C agents ( b agents were

rejected)
I 1_Tz quota goes unfilled
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Priorities as a Constraint

Theorem: If our allocations must be priority respecting in hindsight, then any online
policy mustincur (0(T') loss in efficiency in the worst case.

This linear scaling in the loss is undesirable (ideally, we would like constant).

New ldea: Multi-Objective Optimization Problem

= Priority Loss (Ap): Number of priority violations
#{ t : t unallocated, but there is t’ with 8,/ <. 8, allocated in ¢ }

= FEfficiency Loss (Ag):
# Allocations in Offline Optimum - # Allocations made by Algorithm




Aside: Computing the Offline Optimum

LP in variables xg . = # agents of type 6 allocated in category ¢

Maximize 20co cec(1 — 8g c)Xg ¢ (Pareto efficiency)
Subject to D0c0Xo.c = qc VceC (quotas)
dcecXgc < Ny VoeEO (unit demand)
Xgc=0 Vce(C0&E, (eligibility)

Xgc=0 VvOeBcel

8g . chosenso 8g . < 69 & 60 >, 0’ (priorities)
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Example Execution
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Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of
efficiency and priority loss is at most:

11> (Ic|+1)*
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Pmin

Notably, the loss is constant with respect to the instance size (7 and q)



Achieving Constant Expected Loss

Theorem: There is an online allocation policy for which the expected sum of
efficiency and priority loss is at most:

11> (Ic|+1)*
E[Ap + Ar] < -

Pmin

Notably, the loss is constant with respect to the instance size (7 and q)

Algorithm Idea: Use LP Sensitivity and Compensated Coupling



The Interim LP in Round t

N|t] = (expected) # of future arrivals of each type 6

PS(NH [t], EC [t], dc [t])

E|[t] = current eligible agents in each category ¢

g|t] = remaining quota in each category c

Maximize 2geo ucec(1 — 8g,c)xo,c
Subject to 2ocoXo.c < qc[t] VceC
2icecXo,c < Ng[t] VO EO
Xg. =0 VceC(C,0 ¢&E.|t]

Xgc =0 Ve cel
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Our Algorithm

Foreach Roundt € |T]:

+ x*[c] = solutionto Ps ((pe(T =0 +1(6, = 0)), ¢, E)ecc» (@c)eec )

n Ct — argmax xgt,c [t] Expected Number of Future Arrivals of 6
ceCuU{Ll}
If c, € C: [FCe="1:
" Allocate 6, toin c; = Leave 6, unallocated
b 1 | = F.« E.\{8<.6,} VcEC

Reduce Remaining Quota Prevent Future Allocation to Lower Priority Types
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Compensating for Mistakes

xOPT[t] = hindsight optimal allocation in remaining rounds given past actions

Alt] = loss incurred from the decision in round t

Algorithm incurs loss only when chosen action was never taken by x9%T[¢]

If we chose to allocate: If we chose not to allocate:
= Agft] <1 = Agt] <T-t+1

Inall, Alt] = (T —t + 2) - Pr(chosen action never taken)
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LP Sensitivity

Algorithm takes most common action when expected number of each type arrives
Algorithm incurs loss only when this action is never taken

For this to occur, our LP solution x*[¢] must vary a lot from x9FT[¢t]

Solutions to our LP are 1-Lipschitz in RHS

» Actual number of arrivals must vary widely from expected number of arrivals

. 20 _
E[A[]] < (T =t +2) - 2 |0] exp (22min-(-0)

5 4
E[Ap + Ag] = Npejr E[A[£]] < 120D

. 4
Pmin
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Improving this Bound

While our bound is constant, it depends on |0|, |C|, and p,,,;»,

To remove dependence on |C|, slightly modify problem
= Decide online whether to allocate an agent

= After all arrivals, decide which category each allocation comes from

12|0|°

Improved bound:  E[Ap + Ag] <

Pmin

Ongoing work to remove dependence on other parameters



Thanks For Listening!
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