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Introduction

Two lines of work on causal inference under interference:

1. Estimator Design: Posit a structured potential outcome
model that informs an estimation strategy

2. Experimental Design: Posit structural assumptions on the
interference that inform an experimental design

Research Question
What happens when we combine sophisticated estimation
strategies with complex experimental designs?

Set-up and Notation

n units, treatment assignments
z = (z1, · · · , zn) ∈ {0, 1}n

Potential outcomes Yi(z)
depend on treatments of unit
i’s in‐neighborhood Ni in
interference graph G

Degree‐β outcomes as in Cortez et al. [2022]:
Yi(z) =

∑
S∈Sβ

i

ci,S
∏
j∈S

zj =: ⟨ci, z̃i⟩,

where Sβ
i = {S ⊆ Ni : |S| ≤ β}, z̃i is a vector indicating

treatments of subsets, and ci are model coefficients
We would like to estimate

TTE := 1
n

n∑
i=1

Yi(1) − Yi(0) = 1
n

n∑
i=1

∑
S∈Sβ

i \{∅}
ci,S.

The Pseudoinverse Estimator

Using the pseudoinverse estimator of Swaminathan et al.
[2017], we can estimate each ci by ĉi = Yi(z)Ez

[
z̃iz̃⊺i

]†z̃i.

This leads to the estimator

T̂TE := 1
n

n∑
i=1

⟨ĉi, θi⟩,

where θi = (0, 1, · · · , 1).

Graph Cluster Randomization (GCR)

Partition units into m clusters C = {C1, . . . , Cm}
C(i) := cluster containing node i, C(S) :=

{
C(i) : i ∈ S

}
.

Sample independent Ber(p) random variables W1, · · · , Wm,
and set each zi = WC(i) [Ugander et al., 2013]

Variance Bounds for Arbitrary Designs

Theorem
Suppose that ∥ci∥2 ≤ M for all i and that θ⊺

i ci has the same
sign for all units i. Then

var(T̂TE) ≤ M 2

n2

n∑
i,j=1

γiγj1{z̃i ̸⊥ z̃j},

where γi =
√

|Sβ
i | · θ⊺

i E[z̃iz̃⊺i ]†θi.

γi captures the contribution of node i to the variance
1{z̃i ̸⊥ z̃j} captures the graph structure’s effect on variance

Implications for Clustered Designs

We specialize our results for the case of clustered designs by
computing

γ2
i ≤

2dβ
i · p−|C(Ni)| |C(Ni)| < β,

2dβ
i · |C(Ni)|βp−β |C(Ni)| ≥ β.

Substituting in particular clusterings and choices of β gives:

Setting Prior work Our work

Bernoulli O(M 2d2βp−β/n) O(M 2d2βp−β/n)

3‐net GCR, β = 1 O(dκ5p−κ6) O(d2κ6BM 2p−1/n)

arbitrary GCR, β = 2 — O
(

M 2B
n · n1

n d4p−3/2
)

+O
(

M 2B
n · n>1

n d6p−2
)

Key quantities:

d, maximum degree
κ, restricted growth coefficient
B, maximum cluster size
n1, number of nodes whose neighborhood is contained in a
single cluster

Our results:

recover the bounds of Cortez et al. [2022] for Bernoulli
designs and arbitrary β

improve on the bounds of Ugander et al. [2013] for
structured clusterings by leveraging the β = 1 assumption
give new bounds for arbitrary clusterings that depend on
the quality of the clusterings when β = 2

Experiments

Causal Network:

Cycle network with n = 120
vertices, degree d = 7
Vertex connected to
themselves and 6 closest
neighbors . . .

Potential Outcomes:

Low‐degree models with β ∈ {1, 2, 3, 4}
Coefficients ci,S ∼ Unif

(
0, 10

2|S|

)
Treatment:

GCR, cluster sizes
k ∈ {1, . . . , 6}
Treatment probability p = 0.25 . . .

k = 2

. . .

k = 4

Results:

Horvitz‐Thompson (HT) vs. Pseudoinverse (PI)
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β = 4

Cluster Size (k)

Zooming in on a subset of the results:

Method

β HT, k =6 PI, k =6 PI, k =1

1 7.77 × 102 2.52 × 102 2.19 × 102

4 9.59 × 103 9.59 × 103 5.71 × 105

Main Takeaway
Combining a low‐degree outcomemodel with a clustered de‐
sign gives best of both worlds behavior, with small variance
when either β is small or the clustering is good.
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