Clustered Rollout Designs for Causal Inference with Network Interference
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The Problem

= Company runs experiment to estimate value of ad campaign

= Total Treatment Effect (TTE) measures the average change in
consumer behavior when everyone versus no one sees the ad
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= Interference: Word-of-mouth spreads ad’'s message to others
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= [nterference violates SUTVA, biasing classic estimators
= [nterference structure may be unknown

Formalizing the Problem

Population [n] .= {1,...,n}

Treatments z € {0, 1}"

Outcomes Y;(z): {0,1}" - R

Neighborhood Interference: Y;(z) depends only on treatments of
i's neighbors N; w.r.t. (unknown) interference graph, d = max; [N

3-Order Interactions: Only small subsets of treated neighbors
affect ¢'s outcome
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Past Approach [1]: Bernoulli Rollout Design

Research Objective

Develop an experimental design/estimator that:

= Requires no knowledge of the interference network

= Has improved performance over [1] when 8 > 1 and
treatment budget p is small

= Can use network knowledge to improve performance

Two-Stage Clustered Rollout Design

Experimental Results

- Flp) = B, |1 51, Yi(2)
= Staggered rollout design gives 5+1 samples of F
= Estimate TTE = F(1)— F'(0) with Lagrange interpolation

Is B-degree polynomial
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This estimator:

v/ s unbiased

v/ Does not require knowledge of the interference network
v/ Outperforms baseline estimators

X Has high variance when 8 > 1, p small due to extrapolation

ldea: Run a rollout experiment on only a subpopulation, where we
have the budget to treat a greater proportion ¢ > p of individuals.

Stage 1: Cluster the network. Include clusters in the experimental
units U with probability g.

Stage 2: Do rollout experiment on U w/ max treatment fraction gq.
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2-Stage Estimator:
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Performance of the Two-Stage Estimator

These plots visualize the MSE (black line) of the Two-Stage Esti-
mator on a Stochastic Block Model network for three values of .
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Shading distinguishes three components of the MSE:
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(Squared) Bias:
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Sampling Variance: Vgr(ﬂ[T/T\ED = 0(q . max |7| g_2>

Extrapolation Variance: zjf

Vza t <T/T\E>] = (0 <q2<é1> ' d%Q(iH))

Main Takeaways:
= When 8 =1, 2-stage estimator is unbiased, clustering
increases (sampling) variance

= When £ > 1, bias and sampling variance increase slowly with
g, While extrapolation variance sharply decreases with g

= Two-stage design can significantly reduce MSE

Network:

= Dataset [3] of n = 19, 828 Amazon DVD product listings

= Directed edges from each DVD to five frequent co-purchases
(1< |N;| < 247)

= EFach DVD has subset of &~ 13 out of 13,591 category labels
(genre, actors, setting, etc.)

Potential Outcomes:

= Model from [4], generalized to S-order interactions:

f ~1
Via) = ¥i(0) (1485 + X (1) X T1%).
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= [ncorporates homophily (h;) & degree (d;) correlated responses

Estimators:
Estimator Unbiased Graph Knowledge?
2-Stage Interpolation No NO
Bernoulli Interpolation Yes NO
Difference in Means NO NO
Thresholded DM NO Yes
Hajek NO Yes

Visualizing bias & standard deviation, varying treatment budget p
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Future/Ongoing Work

= [ncorporating time-varying dynamics
= Analyzing model misspecification
= Understanding value of additional measurements in the rollout
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