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Our Goal

Predict the effect of exposing an entire population to a treatment

How will a national advertising campaign influence sales?

How will a new website feature impact user engagement?

Will proposed public health measures mitigate the spread of a disease?

https://www.cbia.com/resources/coronavirus/reopen-connecticut/covid-19-poster-slow-the-spread/
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Total Treatment Effect

Population: Individuals {1, . . . , n}

Treatment: z ∈ {0, 1}n, 1 = treated , 0 = untreated

Outcomes: Each individual i has function Yi : {0, 1}n → R

The Total Treatment Effect is the average effect on an individual’s
outcome if entire population is treated.

TTE =
1

n

n∑
i=1

(
Yi (1)− Yi (0)

)
.
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Estimating TTE

We wish to estimate TTE after treating a small fraction of individuals

Experimental trials can be costly or resource intensive

Treated individuals could see permanent worsened outcome

Classical Approach:

Treat a random subset of individuals, and scale appropriately

Difference of means estimator

Relies on SUTVA: each Yi is a function only of zi

0 1

1 0 0

0 0
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Incorporating Network Effects

Real-world applications include interactions between individuals.

People purchase goods based on recommendations from friends

Engagement on a social platform is affected by how engaged one’s
connections are

Public health policy in one community affects disease transmission to
neighboring communities

j i
influences

Network effects violate SUTVA, introduce bias into classical estimators.
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Potential Outcomes with Network Effects

Neighborhood Interference:

Yi is a function of {zj : j ∈ Ni}

Low Degree (β):

Subsets S ⊆ Ni of treated neighbors
(|S| ≤ β) realize effects ci ,S in Yi

Yi = ci ,∅ +
∑
S⊆Ni

1≤|S|≤β

ci ,S
∏
j∈S

zj

j ′
i

j

β = 1: Linear Heterogeneous Outcomes Model
β = |Ni |: Completely General
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Techniques for Network Causal Inference

Existing Approaches:

Difference of Means: Biased

OLS: Works well for uniform treatment effects ci ,S , otherwise biased

Horwitz-Thompson/Hájek: Unbiased, but require treatment /
non-treatment of entire neighborhoods (clustering helps, but is costly)

Our Contributions:

Known Network Structure: Unbiased estimator that performs well under
Bernoulli randomized design

Unknown Network Structure: Unbiased estimator under staggered
rollout Bernoulli design based on polynomial extrapolation
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Graph-Aware Estimator

T̂TE = 1
n

n∑
i=1

Yi (z)
∑
T ⊆Ni
|T |≤β

f|T |
∏
k∈T

(
zk
p 9 1−zk

1−p

)
, f|T | = (19p)|T |9(9p)|T |

Theorem

T̂TE is unbiased with variance O

(
d2Y 2

max
n max

((
2β
p

)2β
,
(

d
p(1−p)

)β
))

.

Ingredients for Unbiasedness:

Lots of linearity of expectation

Identity E
[∏
j∈S

zj
∏
k∈T

(
zk
p − 1−zk

1−p

)]
= I

(
T ⊆ S

)
· p|S|−|T |

Binomial theorem (using f|T |s) to remove ci ,∅
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Graph-Aware Estimator in Practice

Erdős-Rényi directed networks with varying n, edge probability 10
n

Randomly sampled
{
ci ,S

}
: ∼33% magnitude from direct effects

{
ci ,{i}

}
Overall treatment probability p = 0.2

Linear Quadratic

Cortez, Eichhorn, Yu Estimators for Network Causal Inference May 24, 2022 9 / 12



Graph-Agnostic Estimator

Staggered-Rollout: Assign treatment to individuals over β+1 stages:
z0 ⪯ z1 ⪯ . . . ⪯ zβ, with zt ∼ Bern(pt)

Measure outcomes Yi (z
t) after each stage

Recast estimation as polynomial extrapolation problem:

Learn F (p) = E
z∼Bern(p)

[
1
n

n∑
i=1

Yi (z)
]
to calculate TTE = F (1)− F (0)

Estimator based on Lagrange interpolation:

T̂TE := 1
n

n∑
i=1

β∑
t=0

(
ℓt(1)− ℓt(0)

)
· Yi (z

t), ℓt(p) =

β∏
s=0
s ̸=t

p−ps
pt−ps

Theorem

When pt =
tp
β , T̂TE is unbiased with variance O

(
d2β2

n · Y 2
max ·

(β
p

)2β)
.
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Graph-Agnostic Estimator in Practice

Random directed network on 5000 individuals using configuration model

In-degrees distributed according to power law (α = 2.5)

Out-degrees are consistent

Randomly sampled
{
ci ,S

}
: ∼44% magnitude from direct effects

{
ci ,{i}

}
Linear Quadratic
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Thank You!
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